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Abstract. We present a new method for interpolation in satisfiability
modulo theories (SMT) that is aimed at applications in model-checking
and invariant inference. The new method allows us to control the finite-
convergence of interpolant sequences and, at the same time, provides
expressive invariant-driven interpolants. It is based on a novel integration
of model-driven quantifier elimination and abstract interpretation into
existing SMT frameworks for interpolation. We have integrated the new
approach into the sally model checker and we include experimental
evaluation showing its effectiveness.

1 Introduction

Many modern model-checking techniques rely on Craig interpolation [14,30] as a
learning oracle to support abstraction refinement and invariant inference. Inter-
polants themselves are artifacts usually computed from proofs of correctness for
a finite unrolling of the system under analysis. While it is possible for a model
checker to compute interpolants on its own, in most cases interpolation is pro-
vided by the underlying reasoning engine (such as an SMT solver) that is unaware
of the application-specific needs. The importance of good interpolants is widely
acknowledged – a single “magical” interpolant can make a difference between
verifying the model instantaneously and verification failure – and it is no sur-
prise that interpolants and their properties have been studied extensively. Some
examples of interpolant properties are interpolant (logical) strength [16,38,34],
size [18], and beauty [1].

Interpolant properties mentioned above are conceptually appealing but focus
on single interpolants in isolation. In this paper we investigate interpolants as
used in the IC3/PDR class of model-checking algorithms (e.g. [4,7,23,22]), in the
context of analysis of infinite state systems. The IC3/PDR class of algorithms
reasons locally, without unrolling the systems, and constructs abstractions and
invariant candidates incrementally. The overall algorithm performs not one, but
a sequence of reasoning queries that are interleaved and interact with results of
interpolation. Therefore, we are ultimately more interested in properties of the
interpolation sequence3 rather than a single interpolant. Ideally, the interpolation

? The research presented in this paper has been supported by NSF grant 1528153.
3 Not to be confused with sequence interpolants [29].



procedure would offer some convergence guarantees of this reasoning sequence.
For example, in the pdkind method [22] (a variant of PDR), interpolation is used
to incrementally refine the current candidate invariant by examining induction
failures. If this refinement sequence is allowed to continue indefinitely, the pd-
kind method will never get to reason past its current invariant candidate and
will fail to make progress. Similarly, in IC3/PDR algorithms, a non-converging
interpolation sequence will result in verification failure where all reachability
frames are refined indefinitely.

Example 1 (Model Checking Divergence). Consider a simple transition system
defined with the initial states and a transition relation:

I = (x = 0) ∧ (c = 1) , T ≡ (x′ = x+ c) ∧ (c′ = 2c) .

The system above satisfies the invariant (x ≥ 0). Nevertheless, well-known
interpolation-based model checkers such as nuXmv [5]4 and spacer [23], and
our own tool sally [22] diverge and fail to prove the property. ut

We propose a new interpolation method that is based on the following two
guiding principles:

1. The interpolation method should interact well with the underlying model-
checking algorithm and offer guarantees of convergence for interpolation se-
quences.

2. The interpolation method should be aware of the model checking context and
be able to accept suggestions from the model checker in order to produce
invariant-driven interpolants.

Our new method is developed within the interpolation framework available in all
major SMT solvers (e.g. [10]). For the theory of arithmetic, most SMT solvers
produce interpolants through application of the Farkas lemma [35]. We first show
how this approach can result in divergence, as in the example above, and then
propose a solution based on model-driven quantifier elimination that guarantees
convergence. The new method is very flexible and allows the model checker to
also provide interpolant suggestions. We use this feature to make the result-
ing interpolants invariant-directed, by integrating abstract interpretation [12]
into the interpolation process. To the best of our knowledge, our interpolation
method is the first to combine interpolation, quantifier elimination, and abstract
interpretation, in a framework readily reusable in any interpolating SMT solver.

We have implemented our new approach into the sally model-checker by
relying on the mathsat5 SMT solver [9] and the apron domain library [20].
We present experimental data that shows the effectiveness of the approach and
illuminates the impact of quantifier elimination and abstract interpretation.

4 In order to rely only on interpolation, we disable predicate abstraction in nuXmv.



2 Background

2.1 Satisfiability Modulo Theories

We work in the setting of satisfiability modulo theories (SMT) and assume the
usual notation of first order logic (see, e.g. [2]). In the following, we use the letters
x, y, z to denote variables, and c to denote constants. We consider the quantifier-
free theory of linear arithmetic over the rationals (Tla). We denote with p and q
linear terms over Q, i.e., terms of the form cnxn + · · ·+ c1x1 + c0 over variables
x = 〈x1, . . . , xn〉 with coefficients c0, . . . , cn ∈ Q. A theory atom in arithmetic is
a linear constraint, i.e., an inequality of the form (p � 0) with � ∈ {≤, <},5 and
a literal is an atom or its negation. A clause is a disjunction of literals and we
denote with ⊥ the empty clause. As usual, formulas are constructed inductively
from atoms and the usual Boolean connectives. We denote with atoms(F ) the
set of all atoms appearing in a formula F , and with literals(F ) the set of all
literals of F , i.e. literals(F ) = {a,¬a | a ∈ atoms(F )}. If formula A has all
its free variables in x, we denote this with A(x). A formula A(x) is satisfiable if
there is an assignment mapping its variables to real values such that A evaluates
to true in the usual interpretation. A conjunction of literals C is a Tla-conflict,
if C is inconsistent with Tla. A Tla-lemma is a clause C such that ¬C is a Tla-
conflict or, in other words, C is a valid statement in arithmetic. To ease notation,
we also treat conjunctions and clauses as sets of literals.

Given a formula F that is unsatisfiable in Tla, a resolution proof of F is a
tree P such that a) the root of P is the empty clause, b) leafs of P are either
clauses from F , or Tla-lemmas, and c) each non-leaf node C is an application of
Boolean resolution, i.e. C ≡ (C1∨C2) and has two parents (C1∨ l) and (¬l∨C2)
as below.

(C1 ∨ l) (¬l ∨ C2)

(C1 ∨ C2)

Most modern SMT solvers rely on some variant of the DPLL(T ) framework
[32] to check satisfiability of formulas. In this framework, to solve a formula F ,
a CDCL SAT solver is used to enumerate the truth values of the propositional
skeleton of the formula F . As the formula atoms are assigned to true or false
by the SAT solver, a dedicated decision procedure for the theory T checks the
consistency of the literals A ⊆ literals(F ) corresponding to the Boolean as-
signment. If A is unsatisfiable, the decision procedure returns a T -conflict C ⊆ A
(or equivalently a T -lemma ¬C) that explains the inconsistency in Boolean terms
to the SAT solver. The basic DPLL(T ) framework can be extended to also pro-
vide proofs of unsatisfiability by stitching together the Boolean reasoning and
the T -lemmas resulting from the conflicts. In proofs generated by a DPLL(T )
solver, by construction, the clauses that make up the proof only contain atoms
from the original formula. 6

5 For simplicity we do not consider equality, since they can be eliminated by rewriting
(p = 0) with (p ≤ 0) ∧ ¬(p < 0).

6 In general, SMT solvers may introduce new literals to support reasoning in more
expressive theories, but for reasoning in Tla this is unnecessary.



In the case of linear real arithmetic, we are talking about DPLL(Tla), and
the decision procedure most commonly used is based on a variant of the Simplex
algorithm [17] engineered specifically for DPLL(Tla). Besides its efficiency, this
Simplex algorithm also has a remarkable property that the Tla-conflicts that it
produces are minimal.

2.2 Craig Interpolation

Definition 1 (Craig interpolant). Given two formulas A(x,y) and B(y, z)
such that A∧B is unsatisfiable, a Craig interpolant is a formula J(y) such that
A⇒ J and J ⇒ ¬B. We call the pair (A,B) an interpolation problem.

The formulation above is the general version of the interpolation problem. In
model checking applications, interpolation problems are often specialized so that
the formulas in question are of the form A(x,x′) and B(x′). In such cases, it is
easy to see that J ≡ ¬B is a solution to the interpolation problem, and we call
J the trivial interpolant.

Interpolants for the interpolation problem (A,B) can be computed from a
proof of unsatisfiability of the formula A ∧ B. The underlying technique of this
proof-based interpolation is generally attributed to Pudlák [19,25,33], and was
revisited in recent years in the context of model checking and SMT solving (see,
e.g. [27,28,10]). Given a proof of unsatisfiability for A ∧ B, the interpolant can
be computed inductively over the structure of the proof tree. As the proof tree is
traversed from the leaves to the root, each clause C in the proof tree is associated
a partial interpolant. A partial interpolant of a clause C is an interpolant of the
formulas

(A ∧ (¬C ↓ A)) , (B ∧ (¬C ↓ B)) .

The projection functions (· ↓ A) and (· ↓ B) operate on literals and have the
following properties. For a literal l, one of (l ↓ A) and (l ↓ B) must be l. The pro-
jection (l ↓ A) may be l, if l ∈ literals(A), or it must be > otherwise. Dually,
(l ↓ B) may be l, if l ∈ literals(B), or it must be > otherwise. The projection
function is extended to conjunctions of literals, as expected. Intuitively, the pro-
jection functions are used to extract literals that come from A or B, with some
flexibility in the ownership of shared literals.7 For a clause C, we write ¬C \ A
as a shortcut for the literals in ¬C without (¬C ↓ A), and analogously for B.
Note that the partial interpolant of the empty clause ⊥ is an interpolant of the
original problem that can be read of as the partial interpolant associated to the
root of the proof. The rules for computing partial interpolants depend on the
type of the proof node, as follows.

1. For an input clause C from A the partial interpolant is ¬(¬C \A).
2. For an input clause C from B the partial interpolant is ¬C \B.

7 This flexibility allows interpolants of different logical strength [16].



3. For a T -lemma C, the conjunction ¬C is unsatisfiable, and the partial inter-
polant is computed by a T -lemma interpolator as the interpolant of (¬C ↓ A)
and (¬C ↓ B).

4. For a resolvent clause C the partial interpolant J is computed as follows

(C1 ∨ l) : J1 (¬l ∨ C2) : J2

(C1 ∨ C2) : J
where J =


J1 ∨ J2, if l ↓ B = >,
J2 ∧ J2, if l ↓ A = >,
ite(l, J2, J1), otherwise.

For a general and more detailed exposition on the overall framework we refer
the reader to [6]. Given a T -lemma interpolator P , we denote with itpJP K the
proof-based interpolation procedure that uses P to interpolate the T -lemma
nodes of the proof.

In general, the structure of proof-based interpolants is hard to control: an
interpolant will be a Boolean combination of parts of A clauses, parts of B
clauses, and the interpolants from the T -lemmas. Nevertheless, we can guarantee
that no literals that are exclusively in B can sneak into the interpolant, unless
introduced by the lemmas.

Lemma 1. Given an interpolation problem (A,B), the interpolant J = itpJP K
is a Boolean combination over the atoms of A and atoms from the T -lemma
interpolants.

Proof. We only have to show that no atom from B, that neither appears in
A nor is produced by the T -lemma interpolator, can ever sneak into the final
interpolant. This is trivial for the partial interpolants for input clauses from A
and theory lemmas. The only atoms that can be added to the interpolant in
resolution nodes, are atoms for which l ↓ A = l (and l ↓ B = l) holds, and hence
l ∈ literals(A). We are left with the case of a proof node that is an input clause
from B. In this case the partial interpolant is J ≡ (¬C \ B). By definition, for
each l ∈ J we know that l ↓ B = >. Therefore we must have l ↓ A = l and
l ∈ literals(A). ut

2.3 Arithmetic Interpolation

In the proof-based interpolation framework, for an SMT solver to provide inter-
polation in the theory of arithmetic, it needs to be able to provide interpolation
for each Tla-theory lemma that it contributes to the proof. For an interpolation
problem (A,B), the lemmas of the proof correspond to Tla-conflicts that were
found by the solver during the solving process. In case of arithmetic, and SMT
solvers based on Simplex, each Tla-conflict will be a set of literals C that is
inconsistent (and minimal). Each conflict C can be separated into the A part
and B part, and the goal is to find an interpolant for the interpolation problem
(C ↓ A,C ↓ B).

For linear arithmetic, the most common way to obtain the interpolant of a
conflict is to rely on the Farkas lemma. A Tla-theory conflict C is an unsatisfiable



conjunction of inequalities

Ii ≡ (
∑
j

cijxj + ci0 �i 0) ,

for �i ∈ {<,≤}. By Farkas lemma, there exist coefficients ki > 0 that can certify
the inconsistency, i.e. such that∑

i

ki × Ii = (1 < 0) .

The lemma interpolant can then be given by summing up the A contributions
to the conflict, i.e., the interpolant is

J ≡
∑

Ii∈C↓A

ki × Ii .

It is not hard to see that J is a valid interpolant. The advantage of the Farkas
approach is that the coefficients ki can easily be read off the state of the Simplex
solver when it detects a conflict. We will denote the Tla-lemma interpolator
based on the Farkas lemma as Pfk.

Note that an interpolant obtained with Pfk is always a single inequality.
The ability to produce a single inequality can be advantageous, as it allows the
interpolant to relate variables that might not be syntactically related in A, by
using the B part. On the other hand, as we will see in the next section, the
disadvantage of Pfk is that it can lead to diverging interpolant sequences.

3 Sequences of Interpolants

Behavior of interpolant sequences was first explored in [22], where the notion
of finite-covering interpolation was proposed as an assumption that supports
termination and deductive power of the pdkind method.

Definition 2 (Finite Covering Interpolation). An interpolation procedure
P (or a T -lemma interpolator) is finite covering if for a fixed A(x,y), it can
only produce a finite number of distinct interpolants.

Example 2. If the interpolation problems are of the form A(x,x′) and B(x′),
the trivial interpolation method can always return ¬B as the interpolant. This
kind of interpolation is not useful in general and is not finite covering.

Finite covering is a strong property. Most interpolation procedures are proof-
based and, since the space of proofs and lemmas is infinite, they do not ensure
finite covering. Nevertheless, for theories that admit quantifier elimination, for
any given A, one can construct a single interpolant J(y) by eliminating x from
(∃x . A(x,y)) that refutes any B that needs to be interpolated. In principle, for
arithmetic theories, a finite-covering interpolation procedure could be devised



by relying on procedures such as MCSat [15] that are based on quantifier elim-
ination. But, since none of the available interpolating SMT solvers are MCSat-
based, it would be desirable to have some control over the number of potential
invariants in the existing proof-based interpolation framework.

Definition 3 (Interpolation Sequence). Given a formula A(x,y) and two
sequences of formulas (Jk(y)) and (Bk(y, z)), we call (Jk) an interpolation se-
quence for A and (Bk) if for all k it holds that

1. Bk is consistent with
∧

i<k Ji;
2. Bk is inconsistent with A;
3. Jk is the interpolant between A and Bk.

Definition 4 (Finite Convergence). We say that an interpolation procedure
has a finite convergence property if it does not allow infinite interpolation se-
quences.

To put the definitions above in perspective, in a typical model checking appli-
cation, the formula A will correspond to some abstraction of reachable states
(including the transition relation), formulas Bk will correspond to potentially
bad states, and the interpolants Jk will be learned facts that refute the poten-
tially bad states. The finite convergence property then guarantees that no matter
how we choose the potentially bad states, the interpolation procedure will even-
tually refute all of them. Finite convergence differs from finite covering in that
it is semantic and more directly addresses the undesirable interpolant behavior.

Example 3 (Finite Convergence). Consider the interpolation procedure itpJPfkK,
i.e. the standard SMT interpolation for Tla based on Farkas derivation. Let
A(x, y1, y2) be the constraints

I1 ≡ (y1 − x < 0) , I2 ≡ (x < 0) , I3 ≡ (y2 − x < 0) .

Now, consider the sequence of formulas (Bk), where Bk(y1, y2) ≡ (y1 +ky2 > 0).
Interpolating from A against an individual Bk using the Farkas approach will
always result in an interpolant Jk that is a single inequality constructed as a
combination of formulas from A, i.e., we will obtain

Jk ≡ 1× I1 + (k + 1)× I2 + k × I3 ≡ (y1 + ky2 < 0) .

Since interpolating from A over the sequence (Bk) results in an infinite sequence
of distinct interpolants, the Farkas approach to interpolation does not have the
finite-covering property, i.e., neither Pfk nor itpJPfkK guarantee finite conver-
gence.

On the other hand, we can rely on Fourier-Motzkin quantifier elimination to
simply eliminate x from A and obtain the conjunction J ≡ (y1 < 0) ∧ (y2 < 0)
that is a suitable interpolant for all Bk simultaneously (it is derivable from A
and singlehandedly refutes all Bk). Note that, as mentioned before, the Farkas-
based interpolants relate variables y1 and y2 in the interpolants. On the other
hand, the interpolants based on Fourier-Motzkin do not. ut



An interesting property of finite convergence is that we can interleave an in-
terpolation procedure P1 with finite convergence with an arbitrary interpolation
procedure P2 and still obtain finite convergence, as long as the interleaving is
fair to the procedure P1.8

The following lemma shows that we do not need to devise an entirely new
interpolation procedure to ensure finite convergence. Instead, we only need to
devise a finite-covering T -lemma interpolator that can then be used in the stan-
dard proof-based interpolation framework.

Lemma 2. If a T -lemma interpolator P is finite covering, then the proof-based
interpolation procedure itpJP K has the finite convergence property.

Proof. Assume that itpJP K does not have the finite convergence property. This
means that there is an infinite interpolation sequence, i.e. there is a formula A,
and two sequences of formulas Jk and Bk as in Definition 3. In this sequence,
the interpolants Jk must be distinct functions because for each k

– Jk is inconsistent with Bk; but
– Ji is consistent with Bk, for i < k.

On the other hand, P can only produce a finite number of lemma interpolants
and, by Lemma 1, itpJP K (as a proof-based procedure) can only produce Boolean
combinations of clauses from A and lemma interpolants. Therefore, the overall
procedure itpJP K will only be able to produce a finite number of distinct inter-
polants (seen as functions), proving the case by contradiction. ut

4 Interpolation with Conflict Resolution

In this section we present a Tla-lemma interpolator Pcr that replaces the tra-
ditional interpolator based on the Farkas lemma Pfk. Throughout this section
we therefore assume a global interpolation problem, i.e. formulas A(x,y) and
B(y, z), with A ∧ B unsatisfiable. In addition, we assume a global ordering on
variables so that z ≺ y ≺ x. Our goal is to devise the Tla-lemma interpolator
Pcr that is finite covering. In order to achieve this we will rely on a model-driven
variant of Fourier-Motzkin (FM) quantifier elimination.

4.1 Fourier-Motzkin Elimination

Given an inconsistent set of inequalities F , a FM proof of F has the same
structure as a Boolean resolution proof would, but with clauses replaced with
inequalities, and the resolution rule replaced with the FM elimination rule. Given
two inequalities sharing a variable x of opposite signs, the FM rule deduces a
new inequality with this variable eliminated.9

8 In a way, an interpolation procedure that has the finite convergence property is
analogous to the widening operator in abstract interpretation.

9 The presented rule is over strict inequalities only, other cases are as expected.



Il ≡ (p− x < 0) : Iu ≡ (x− q < 0)
FM x

R ≡ (p− q < 0)

We first explain the general idea behind the new lemma interpolation proce-
dure. Each Tla-lemma interpolation problem consists of two sets of inequalities
CA(x,y) and CB(y, z), with CA ∧ CB unsatisfiable. Therefore, there exists a
FM elimination proof of inconsistency that is ordered according to ≺. In other
words, in the FM proof the x variables are eliminated first, followed by the y
variables, and finally the z variables. The order of elimination ensures, for ex-
ample, that if any inequality I in the proof contains an x variable, I must have
been derived from CA. Let J be the set of inequalities in the proof that do not
contain any x variables but were either a) derived from two inequalities that
contain x variables; or b) appear in CA directly. By construction, then CA ⇒ J
and J is in y variables only. In addition, the inequalities in J constitute a cut of
the proof tree that is enough to refute CB . In other words, J is an interpolant
between CA and CB . This selection of inequalities from the proof can be done
locally at each resolution node, and we denote the procedure that returns the
relevant inequalities as select(R, Il, Iu).

Example 4. Let’s revisit the interpolation problem of Example 3, i.e., let

CA ≡ (y1 − x < 0) ∧ (x < 0) ∧ (y2 − x < 0) , CBk
≡ (y1 + ky2 > 0) .

Below is a Fourier-Motzkin proof of unsatisfiability of CA ∧ CBk
, with the vari-

ables ordered as y2 ≺ y1 ≺ x. We mark inequalities derived only from CA with
red bold font, and all other inequalities with blue.

y1 − x < 0 x < 0
x

y1 < 0 −y1 − ky2 < 0
y1 −ky2 < 0

y2 − x < 0 x < 0
x

↓
y2 < 0

y2
0 < 0

As discussed above, we can examine the proof and get that

select((y1 < 0), (y1 − x < 0), (x < 0)) = {(y1 < 0)} ,
select((y2 < 0), (y2 − x < 0), (x < 0)) = {(y2 < 0)} .

Therefore the set of inequalities J = { (y1 < 0), (y2 < 0) } is an interpolant for
CA and CBk

for any k. ut

4.2 Conflict Resolution

Although we could use FM elimination to derive the Tla-lemma interpolants, as
above, this would likely not be efficient. FM elimination is a quantifier elimi-
nation procedure and can become very inefficient even with small numbers of
variables. Instead, we will adopt a model-driven variant of FM elimination called
conflict resolution (CR). The conflict resolution algorithm was originally intro-
duced in [24] for solving systems of linear inequalities. CR is an instance of a



recent class of model-based decision procedures, such as Generalized DPLL [26]
and MCSat [15], but is simpler as it targets conjunctions of constraints only.
The algorithm is related to FM elimination in the same way the CDCL algo-
rithm is related to Boolean resolution: instead of trying to prove the problem
unsatisfiable by saturating the FM rule, conflict resolution attempts to build a
model and only applies the FM rule when the model-building fails. This princi-
pled way of deriving new inequalities makes it possible to produce a proof while
only deducing inequalities that are relevant for unsatisfiability.

We use a variation of the original algorithm [24] adapted to the context of
Tla-lemma interpolation. In this context, we are given two sets of inequalities
CA(x,y) and CB(y, z) that together are known to be unsatisfiable. The algo-
rithm will construct a proof that CA ∧ CB is unsatisfiable and, as a side-effect,
collect the set of inequalities J that will form the interpolant of CA and CB .
Before we describe the algorithm itself, we go trough some of its ingredients.

We order all the variables so that 〈v1, . . . , vn〉 = 〈z,y,x〉 and call i the level
of variable vi. A variable vi is the top variable in I, if vi is the largest variable in
I with respect to ≺, and we denote with level(I) the function that returns the
level i. Given a set of inequalities I, we can partition it by level and we denote
with Iv the set of all inequalities from I with v as the top variable.

The algorithm maintains an assignment σ of variables to values in Q. Any in-
equality I with vi as the top variable implies a bound on the possible values that
vi can take with respect to the current assignment of v1, . . . , vi−1. For example,
if I ≡ (vi + p ≤ 0), then the implied bound is vi ≤ −σ(p). For each variable
vi, the algorithm maintains an interval feasible[vi] = (l, u) that represents the
strongest lower and upper bounds inferred on vi. Additionally, the bounds of
this interval are associated with the inequalities Il[vi], Iu[vi] that imply them.
We say that the variable vi is in conflict, denoted with in-conflict(vi), if the
current lower and upper bounds on vi are in conflict, i.e., when feasible[vi] is
either a (half-)open interval with l ≥ u, or a closed interval with l > u.

The main inference mechanism in the algorithm is bound propagation on in-
equalities, which is an arithmetic analogue to unit propagation that SAT solvers
perform on clauses. Given an inequality I with vi as its top variable, we de-
note with propagate-bounds(I, vi) the procedure that computes the bound
that I implies on vi and updates the bound information if the new bound
is stronger than the existing one. We overload bound propagation to oper-
ate over a set of inequalities Ivi with vi as its top variable, and denote with
propagate-bounds(Ivi , vi) the procedure that resets the current bound infor-
mation on vi and then updates it by propagating bounds over all inequalities in
Ivi . If, after performing exhaustive propagation over Ivi , the variable vi is not
in conflict, then we can safely pick a value α ∈ feasible[vi], which we denote
with pick-value(vi).

10 In this case, by construction, it is guaranteed that the
value can be used to satisfy Ivi , i.e., σ{vi 7→ α} � Ivi .

The algorithm starts at level 1 and tries to gradually build a satisfying as-
signment σ for the variables v, by assigning them values one by one. We know

10 For example we can pick l+u
2

, which is what we do in our implementation.



Algorithm 1 Interpolation with Conflict Resolution.

Require: Sets of inequalities CA(x,y) and CB(y,z), known to be inconsistent.
Ensure: Set of inequalities J is an interpolant for CA and CB .

1 function Pcr(CA, CB)
2 v ← 〈z,y,x〉 . order the variables z ≺ y < x.
3 i← 1; I ← CA ∪ CB ; J ← ∅ . initialize and start from bottom
4 loop
5 propagate-bounds(Ivi , vi) . compute bounds for vi
6 while in-conflict(vi) do . resolve any conflicts
7 R← fm-resolve(Il[vi], Iu[vi], vi) . compute the resolvent
8 J ← J ∪ select(R, Il[vi], Iu[vi]) . add relevant inequalities to J
9 if (R 6= ⊥) then . backtrack with resolvent

10 i = level(R) . level to backtrack to
11 I = I ∪ {R} . remember the new inequality
12 propagate-bounds(R, vi) . update bounds with new inequality
13 else return J . J is the interpolant.

14 σ[vi]← pick-value(vi) . pick a value for vi in feasible(vi)
15 i← i+ 1 . continue with next variable

that a complete model does not exist, and the failed model-building attempts will
guide the process of FM resolution. At each level i the algorithm performs bound
propagation to compute the interval of potential values that the variable vi can
take with respect to the assignment of variables v1, . . . , vi−1. If bound propaga-
tion produces a feasible interval, then the algorithm assigns to vi a value in this
interval and moves on to the next variable. Otherwise, in-conflict(vi) is true,
and there are two inequalities11

Il[vi] ≡ (p− vi < 0) , Iu[vi] ≡ (vi − q < 0) ,

such that the bounds they imply on vi are inconsistent, i.e., we know that σ(p) ≥
σ(q). Mimicking a SAT solver, we can resolve this conflict by applying Fourier-
Motzkin resolution to derive the resolvent R = (p − q < 0). We denote the
resolution inference over inequalities I1 and I2 that eliminates variable vi with
R = fm-resolve(I1, I2, vi). The inequality R is a potential new node in the FM
proof, and we examine the proof inference and add any relevant inequalities to
the interpolant J . In addition we use the resolvent R to backtrack as follows.
Since the resolvent R does not include vi, it must be of level less than i. We
also know by σ(p)− σ(q) ≥ 0 that R is inconsistent with the current model, i.e.
that σ 6� R. If R ≡ ⊥, we have found the proof of unsatisfiability and the set of
inequalities J is the final interpolant. Otherwise, we use R to backtrack to the
level of R and update the bounds of its top variable with new information.

Properties of Pcr. The termination and correctness of the algorithm follows from
the termination and correctness of the original conflict resolution algorithm [24],
and the fact that we can obtain the interpolant from the computed FM proof.

11 For simplicity we only consider the case of strict inequalities, other cases are similar.



Another way of looking at the Pcr algorithm is as a semantic interpolation game
where each model that can be constructed for CB inequalities is refuted by an
inequality derived from CA.

FM elimination allows us to put a bound on the number of literals that
can appear in the interpolant J . First, for a fixed global A, and any lemma
interpolation problem (CA, CB), we know that literals(CA) ⊆ literals(A).
Therefore, the inequalities that can appear in J are limited to the inequalities
that one can obtain by FM elimination on literals(A). From this bound and
Lemma 2 we can then show the following two properties of Pcr.

Lemma 3. Pcr is a finite-covering Tla-lemma interpolator.

Lemma 4. itpJPcrK interpolation procedure has the finite convergence property.

5 Improving Interpolation with Abstract Interpretation

The Pcr lemma interpolator described in the previous section ensures finite con-
vergence of interpolation sequences. This is achieved by restricting the language
of the potential interpolants by relying on quantifier elimination. Since our in-
terest in interpolation comes from its use in construction of invariants, this also
restricts the potential invariants that we can construct and can be seen as a dis-
advantage of the method. In this section we consider the interpolation problem
specifically in the context of model checking and invariant inference and try to
remedy this.

Model Checking. We assume a finite set of variables x called state variables. To
each variable x ∈ x, we associate its primed version x′. We call any formula
F (x) over the state variables a state formula, and any formula T (x,x′) a state-
transition formula. A state-transition system is a pair S = 〈I, T 〉, where I(x)
is a state formula describing the initial states and T (x,x′) is a state-transition
formula describing the system’s evolution.

Example 5. Let S = 〈I, T 〉 be a transition system defined as

I ≡ (x = 0) ∧ (y = 0) , T ≡ (x′ = x+ 1) ∧ (y′ = y + 1) .

It is easy to see that (x = y) is an invariant of S. Nevertheless, consider a typical
query that a model checker would use to check if a potential bad state (x < y)
is reachable.

CA︷ ︸︸ ︷
I(x, y) ∧ T (x, y, x′, y′)∧

CB︷ ︸︸ ︷
(x′ < y′) .

The query above is unsatisfiable, and we can use it to derive an interpolant to use
in invariant inference. Unfortunately, by using Pcr, since we are only inferring
inequalities from CA, we can never deduce an inequality that relates the variables
x and y, and the resulting interpolant is (x′ = 1) ∧ (y′ = 1).



On the other hand, because it must produce a single constraint, the Farkas-
based Pfk will relate the variables x and y, and produce the desired interpolant
as follows

(x′ = x+ 1) + (y′ = y + 1) + (x = 0) + (y = 0) ≡ (x′ = y′) .

This remarkable capacity of Pfk to relate relevant variables is probably one of
the main reasons for its successful adoption. ut

Abstract Interpretation. As the example above shows, restricting the language
of interpolants with quantifier elimination can put Pcr at a loss when inferring
invariants. In order to improve the invariant-inference capacity of Pcr, we will
rely on the tools provided by one of the most successful frameworks for invariant
inference – abstract interpretation [12]. Abstract interpretation is a theory for
sound approximation of the semantics of transition systems. The appeal of ab-
stract interpretation is that it can efficiently compute a superset of all possible
behaviors of a system by means of abstractions. These abstractions are com-
puted by abstracting the semantics of the system with semantic techniques that
are orthogonal to the syntactic, proof-based approach of quantifier elimination.
Abstract interpretation provides a range of abstract domains D# that can be
used for approximating Tla transition systems, such as the interval [11], octagon
[31], and the polyhedra [13] domains.

Since we are working in the context of model checking, we assume a global
interpolation problem of the form

A(x,x′) ≡ (I(x) ∧ T (x,x′)) , B(x′) ,

with A ∧B unsatisfiable. Note that the usual SMT interpolation procedures do
not have this information (the relationship between x and x′ variables has to
be provided by the model checker).

As part of the proof of unsatisfiability of A∧B, we also assume a Tla-conflict
separated into CA(x,x′) and CB(x′) that we need to interpolate. The formula
CA ∧ CB is unsatisfiable and we can view CA as containing one piece of the
transition relation T . The transition piece itself is in convenient conjunctive form
expressed with linear inequalities and we therefore pick the polyhedra domain
as our precise concrete domain C#. For the abstract domain we can choose any
other arithmetic domain D# mentioned above. We will be using the following
operations provided by the domains:

– Abstraction function α : C# 7→ D#, mapping concrete domain elements to
their abstract representation.

– Concretization function γ : D# 7→ C#, mapping abstract domain elements
to their concrete representation.

– Join operator t# : D# × D# 7→ D# that, given two abstract domain ele-
ments, computes the abstract element capturing both of them.

– Projection operator ∃# that can eliminate variables from elements of D#.



Example 6. We illustrate the approach on Example 5 where Pcr was not satis-
factory. Let D# be the polyhedra domain (so no abstraction is necessary). First,
we project the CA formula to its state representation and next state projections,
obtaining

DA = (∃# x′, y′ . A) = (x = 0) ∧ (y = 0) ,

DB = (∃# x, y . A) = (x′ = 1) ∧ (y′ = 1) .

As usual in abstract interpretation, we can combine the two domain elements
using a join operation to obtain

DJ = (DA{x, y/x′, y′})t#DB = (x′ = y′) ∧ (0 ≤ x) ∧ (x ≤ 1) ,

which is the invariant we were looking for.12 ut

As the example above shows, we can use the tools from abstract interpreta-
tion to infer new facts that take into account the transition system semantics
(at least partially). In general, the facts inferred by abstract interpretation will
not constitute an interpolant (they might not be inconsistent with CB). But, the
inferred facts are valid consequences of CA, so we can freely conjoin them to CA

and resort to Pcr to complete the interpolant. The Tla-lemma interpolator Pai,
based on this approach, is fully described in Algorithm 2. We emphasize again
that this approach relies on the model checker to provide the information about
the transition system – the substitution DA{x/x′} at line 5 can not be done
without knowing the correspondence between the x and x′ variables.

Algorithm 2 Interpolation with Abstract Interpreation.

Require: Sets of inequalities CA(x,x′) and CB(x′), known to be inconsistent.
1 function Pai(CA, CB)
2 D ← α(CA) . abstract the partial transition
3 DA ← ∃#x′. D . project on state variables x
4 DB ← ∃#x . D . project on next-state variables x′

5 DJ ← (DA{x/x′})t#DB . join the two abstractions
6 return Pcr(CA ∪ γ(DJ), CB) . compute the interpolant

Properties of Pai. The argument to show that Pai is finite covering is similar
to the argument we used for Pcr. For a fixed A, and any Tla-lemma interpola-
tion problem (CA, CB), we know that literals(CA) ⊆ literals(A). Therefore,
overall, abstract interpretation will always operate on subsets of literals(A)
and can only ever infer a bounded number of new facts. This finite set of poten-
tial new literals does not interfere with finite covering by adding them to Pcr,
it only increases the basis which quantifier elimination can derive inequalities
from.
12 For readers unfamiliar with the polyhedra domain, the join DJ is computed as the

convex closure of the points {(0, 0), (1, 1)}.



Lemma 5. Pai is a finite-covering Tla-lemma interpolator.

Lemma 6. itpJPaiK interpolation procedure has the finite convergence property.

6 Experiments

We have implemented the new interpolation method in the sally model-checker
by relying on the mathsat5 SMT solver [9] for interpolation and apron [20] for
abstract interpretation over arithmetic domains.13 We use the default pdkind
implementation in sally and denote with pdkind+cr the method that uses the
new interpolation method with conflict resolution (but no abstract interpreta-
tion), and with pdkind+cr+polka the method that uses the new interpolation
method with both conflict resolution and abstract interpretation based on the
polyhedra domain.

We have evaluated the new procedure on a range of benchmarks. Several of
our benchmarks are related to fault-tolerant algorithms (om, ttesynchro and
ttastartup, unifapprox, azadmanesh, approxagree, hacms, and misc prob-
lem sets). We also used benchmarks from software model checking (cav12,
ctigar). The lustre benchmarks are from the benchmark suite of the kind
model-checker, cons are simple concurrent programs, and lfht problems model
a lock-free hash table. Some of the benchmarks were obtained from an existing
repository.14

Our main goal is to illustrate the impact of the new interpolation method
but, to put the results in context, we also compare nuXmv [5,8] (nuXmv was the
most robust model checker in our previous work [22]) The results are presented
in Figure 1. Each problem instance was run with a timeout of 10 minutes. Each
column of the table corresponds to pdkind with a different Tla-lemma interpo-
lator, and each row corresponds to a different problem set. For each problem
set and interpolator we report the number of problems that the tool has solved,
how many of the solved problems were valid and invalid properties, and the total
time (in seconds) that the tool took to solve those problems.

First we evaluate the impact of using conflict resolution (pdkind+cr) and
abstract interpretation (pdkind+cr+polka) as the interpolator, compared to
the default pdkind with the Farkas-based interpolator. The results are shown
in Figure 1. Overall, by adding conflict resolution as the lemma interpolator
(pdkind+cr), the method can find more counter-examples (but can prove fewer
properties) than the default pdkind. Then, by extending it with abstract in-
terpretation (pdkind+cr+polka), the tool retains the advantage at finding
counter examples, but can, in addition, prove more valid properties. These re-
sults are aligned with our expectations. With the interpolation providing conver-
gence guarantees, the pdkind method does not get stuck in individual invariant

13 sally is open source on GitHub. The majority of the interpolator code can be seen
in https://github.com/SRI-CSL/sally/blob/interpolation/src/smt/mathsat5/

conflict_resolution.cpp.
14 https://es-static.fbk.eu/people/griggio/vtsa2015/

https://github.com/SRI-CSL/sally/blob/interpolation/src/smt/mathsat5/conflict_resolution.cpp
https://github.com/SRI-CSL/sally/blob/interpolation/src/smt/mathsat5/conflict_resolution.cpp
https://es-static.fbk.eu/people/griggio/vtsa2015/


Fig. 1. Comparison of different Tla-lemma interpolators. Rows correspond to different
problem sets and columns correspond to pdkind with different interpolators (separate
column for nuXmv for context). Each table entry shows the number of problems that
the tool has solved, how many of those were valid and invalid, and the total time it
took for the solved instances.

pdkind pdkind+cr pdkind+cr+polka nuXmv

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approxagree (9) 9 8/1 185 9 8/1 240 9 8/1 238 6 5/1 477

azadmanesh (20) 20 17/3 278 20 17/3 173 20 17/3 174 20 17/3 1269

cav12 (99) 68 48/20 2541 71 49/22 3722 71 49/22 2966 74 51/23 2910

conc (6) 4 4/0 117 3 3/0 6 5 5/0 30 4 4/0 220

ctigar (110) 74 54/20 1252 73 53/20 1532 74 54/20 1686 81 61/20 1829

hacms (5) 4 2/2 955 3 2/1 463 5 3/2 923 4 2/2 459

lfht (27) 17 17/0 106 17 17/0 681 23 23/0 2194 24 24/0 562

lustre (790) 772 438/334 2730 755 419/336 5209 773 438/335 1964 769 434/335 3542

misc (10) 8 7/1 117 8 6/2 200 9 7/2 241 8 8/0 320

om (9) 9 7/2 3 9 7/2 1 9 7/2 1 9 7/2 469

ttastartup (3) 1 1/0 7 1 1/0 7 1 1/0 6 1 1/0 1

ttesynchro (6) 6 3/3 16 6 3/3 9 6 3/3 9 5 2/3 1428

unifapprox (11) 11 8/3 225 11 8/3 134 11 8/3 132 11 8/3 271

1003 614/389 8532 986 593/393 12377 1016 623/393 10564 1016 624/392 13757

inference frames and can make progress towards the counter-examples. But, due
to its restricted interpolation language it is bound to also be restricted in invari-
ant inference, which is why pdkind+cr can show fewer valid properties correct.
The addition of abstract interpretation inferences improves this situation by
extending the expressiveness of interpolants and making the interpolants more
invariant-directed.

Next, we evaluate the effect of using different abstract domains. The apron
library provides the standard interval [11], octagon [31], and polyhedra [13]
domains, and we denote variants of pdkind that use these domains as pd-
kind+cr+box, pdkind+cr+oct, and pdkind+cr+polka. Results of the
comparison are presented in Figure 2. The main takeaway from comparing dif-
ferent abstract domains is that, the more expressive the domain, the better the
results. In general, expressive abstract domains are desirable in verification appli-
cation, but suffer from scalability problems. The polyhedra domain, for example,
is worst case exponential complexity in both space and time, and there is ongo-
ing work to try and make it more efficient in practice [36]. In our context, we
can easily apply the polyhedra domain even by relying on an off-the-shelf library
such as apron, as we use the domains solely on the cores of the theory lemmas
produced by the SMT solver, where the number of variables and lemmas tends
to be small. Figure 3 shows the distribution of the interpolation problems with
respect to the number of constrains and the number of variables.



Fig. 2. Comparison of different abstract domains. Each row corresponds to a different
problem set. Each column corresponds to pdkind+cr with a different abstract domain.
Each table entry shows the number of problems that the engine solved, how many of
those were valid and invalid, and the total time it took for the solved instances.

pdkind+cr pdkind+cr+box pdkind+cr+oct pdkind+cr+polka

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approxagree (9) 9 8/1 240 9 8/1 240 9 8/1 237 9 8/1 238

azadmanesh (20) 20 17/3 173 20 17/3 170 20 17/3 170 20 17/3 174

cav12 (99) 71 49/22 3722 71 49/22 3291 67 48/19 1474 71 49/22 2966

conc (6) 3 3/0 6 5 5/0 35 5 5/0 47 5 5/0 30

ctigar (110) 73 53/20 1532 74 54/20 1395 73 53/20 884 74 54/20 1686

hacms (5) 3 2/1 463 4 2/2 799 4 3/1 1036 5 3/2 923

lfht (27) 17 17/0 681 20 20/0 1020 20 20/0 772 23 23/0 2194

lustre (790) 755 419/336 5209 757 421/336 3075 762 428/334 3063 773 438/335 1964

misc (10) 8 6/2 200 9 7/2 303 9 7/2 220 9 7/2 241

om (9) 9 7/2 1 9 7/2 1 9 7/2 1 9 7/2 1

ttastartup (3) 1 1/0 7 1 1/0 6 2 1/1 459 1 1/0 6

ttesynchro (6) 6 3/3 9 6 3/3 10 6 3/3 9 6 3/3 9

unifapprox (11) 11 8/3 134 11 8/3 131 11 8/3 130 11 8/3 132

986 593/393 12377 996 602/394 10476 997 608/389 8502 1016 623/393 10564

Fig. 3. The distribution of the number of constraints and variables in Tla-lemma in-
terpolation problems over our whole dataset (vertical axis is logarithmic). Of all inter-
polation problems, 66.55% have 5 variables or less, 87.18% have 10 variables or less,
and 96.22% have 20 variables or less.
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7 Conclusion

We presented a new approach for proof-based interpolation in SMT that can
guarantee convergence of interpolation sequences and is invariant-driven. Both
of these properties are valuable in the context of model checking techniques
such as IC3/PDR. For example, with the new interpolation method, we can fi-
nally guarantee that the theoretical results for our own pdkind method [22] also
hold in practice. The approach combines two orthogonal approaches to invari-
ant inference – symbolic reasoning through quantifier elimination and semantic
reasoning with abstract interpretation – to provide interpolants that are both
expressive invariant-driven facts and can be controlled to provide convergence
guarantees. The new interpolation method takes advantage of the strengths of
the individual parts of the usual model-checking reasoning stack. For a sys-
tem under analysis, the model checker provides information about the system,
the SMT solver discharges the control-flow of the system, the interpolator pro-
vides the symbolic forward reasoning, and the abstract interpretation improves
the interpolants by interpreting the pieces of the system with no control flow.
For example, both quantifier elimination and abstract interpretation can be ex-
pensive or ineffective on expressive domains when the problems involve many
variables and disjunctions. Our new method sidesteps these issues since we only
need to reason on the unsatisfiable cores provided by the SMT solver, which are
minimal and conjunctive. The overall architecture of the new approach is shown
in Figure 4.

Model Checker Abstract Interpretation

SMT Solver

Proof-Based Interpolation Quantifier Elimination

Query Interpolant

Proof Interpolant
T -conflict

T -co
nflict

Interpolant

Abstraction

System information

Fig. 4. All participants in the interpolation framework.

The method is implemented in the sally model checker, by relying on
the proof-based interpolation framework of the mathsat5 SMT solver and the
apron abstract domain library. Our experimental evaluation shows that the new
interpolation method is effective and improves the performance of sally in both
invariant inference and bug-finding.

Future Work. The new interpolation method is modular and enables cross-
pollination of the different techniques across the whole reasoning stack. This
gives rise to many interesting directions for future work. As the first steps, we



plan to explore the use of tools from abstract interpretation to improve the in-
terpolation in the theories of integer arithmetic, bit-vectors and arrays. In the
other direction, we also see a possibility to contribute symbolic techniques to
abstract interpretation. For example, if we lift the restriction that the lemma
interpolants must refute the B part of the interpolation problem, the result
of the proof-based interpolant computation is not an interpolant but rather
an abstraction of the A formula. This could be a potential direction toward a
property-driven logical interpretation (e.g., [37,3]). It is important to note that,
although our new method guarantees convergence of the interplant sequences,
it does not guarantee the convergence of the overall model-checking procedure.
The overall convergence can be achieved by adding even more control over the
interpolation language (e.g., [21]), and we plan to explore this direction.

Acknowledgements. We would like to thank Alberto Griggio for providing an
interface to mathsat5 that allowed us to replace the default T -interpolator
with our custom external interpolator.
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