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1 Introduction

In the field of artificial intelligence researchers have studied uncertain reasoning using different
tools. Some of the formalisms for representing and reasoning with uncertain knowledge are
based on probabilistic logic [1, 9]. This logic extends classical propositional language with
expressions that speak about probability, while formulas remain true or false. The satisfi-
ability problem of a probabilistic formula (PSAT) is NP-complete [1]. Although PSAT can
be reduced to linear programming problem, solving it by any standard linear system solving
procedure is unsuitable in practice, due to exponential growth of number of variables in the
linear system obtained by the reduction. Nevertheless, it is still possible to use more efficient
numerical methods, e.g., the column generation procedure of linear programming. In more
recent article [8] we presented Genetic algorithms (GA) for PSAT. In this paper we suggest
Variable neighborhood search (VNS) based heuristic for solving PSAT.

2 Probabilistic Logic and PSAT

In this section we introduce the PSAT problem formally (for a more detailed description please
see [9]). Let £ = {x,y, z,...} be the set of propositional letters. A weight term is an expression
of the form ajw(ay) + ... + apw(ay,), where a;’s are rational numbers, and «;’s are classical
propositional formulas with propositional letters from £. The intended meaning of w(«) is
probability of « being true. A basic weight formula has the form ¢ > b, where t is a weight
term, and b is a rational number. Formula (¢ < b) denotes —(t > b). A weight literal is an
expression of the form ¢ > b or t < b. The set of all weight formulas is the minimal set that
contains all basic weight formulas, and it is closed under Boolean operations. Let a be a
classical propositional formula and {x1,z9,...,2x} be the set of all propositional letters that
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Repeat the following steps until the stopping condition is met:

1. Set k « 1;
2. Until £ = kmax, repeat the following steps:

(a) Shaking. Generate a point 2’ at random from the k*" neighborhood of = (z' € Ny (x));

(b) Local Search. Apply some local search method with z’ as initial solution; denote with z’/ the so obtained
local optimum;

(c) Move or not. If this optimum is better than the the incumbent, move there (z < z'’), and continue the
search with Nj(k < 1); otherwise, set k — k + 1;

Figure 1: Main steps of the basic VNS metaheuristic

appear in a.. An atom of « is defined as a formula at = +x1 A... Atz where tz; € {z;, ~x;}.
Let At(a) denote the set {aty, ..., atqr} of all atoms of a. Every classical propositional formula
a is equivalent to a formula CDNF(«) = VjL ati; called complete disjunctive normal form of
a. We use at € CDNF(«a) to denote that the atom at appears in CDNF(«). A formula f is
in the weight conjunctive form (WCF) if it is a conjunction of weight literals. Every weight
formula f can be transformed to a disjunctive normal form

DNF(f) = Vi) A2y (a7 w(ey?) + ..+ all w(al ) pij biy),

where disjuncts are formulas in WCF and each p; j can be either < or >. Since a disjunction
is satisfiable iff at least one disjunct is satisfiable, we will consider only WCF formulas.

Formally, PSAT is the following problem: given a WCF formula f, is there any probability
function p defined on At(f) such that f is satisfiable? Note that a WCF formula f is satisfied
by p iff for every weight literal afw(ed) + ... + al, w(al,.) pi by in f

al Z ulat) + ...+ afu Z w(at) p; by, (1)

ateCDNF (o) atECDNF(a%i)

while the probabilities p(at) assigned to atoms are nonnegative and sum up to 1. This system
contains a row for each weight literal of f, and columns that correspond to atoms at € At(f)
that belong to CDNF(«) for at least one propositional formula « from f.

3 VNS for the PSAT

VNS is a recent metaheuristic for solving combinatorial and global optimization problems
(e.g, see [6, 3, 4]). It is a simple, yet very effective metaheuristic that has shown to be very
robust on a variety of practical NP-hard problems. The basic idea behind VNS is change of
neighborhood structures in the search for a better solution. In an initialization phase, a set
of kmax (a parameter) neighborhoods is preselected (N, i =1,..., kpax), a stopping condition
determined and an initial local solution found. Then the main loop of the method has the
steps described in Figure 1. Therefore, to construct different neighborhood structures and
to perform a systematic search, one needs to supply the solution space with some metric (or
quasi-metric) and then induce neighborhoods from it. In the next sections, we answer this
problem-specific question for the PSAT problem.
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The Solution Space. As the PSAT problem reduces to a linear program over probabilities,
the number of atoms with nonzero probabilities necessary to guarantee that a solution will be
found, if one exists, is equal to L + 1. Here L is the number of weight literals in the WCF
formula. The solution is therefore an array of L + 1 atoms = = [A1, Ao, ..., Ar41], where A;,
i=1,...,L+1 are atoms from At(f), with the assigned probabilities p = [p1,p2,...,Dr+1]-
Atoms are represented as bit strings, with the i*! bit of the string 1 iff the i*® variable is positive
in the atom. A solution (an array of atoms) is the bit string obtained by concatenation of the
atom bit strings. Observe that if the variable x is known, the probabilities of atoms not in x
are 0, and system (1) can be rewritten compactly as

L+1
Zcijpj Pi b;, +=1,...,L . (2)
j=1

Here ¢;; = Y al, with sum going over all o} from (1) such that A; € CDNF(ai). Solving (2)
gives us a vector of probabilities p.

Initial Solution. Initial solution is obtained as follows. First, 10 x (L + 1) atoms are
randomly generated, and then from these atoms the L 4+ 1 atoms with the best grades are
selected to form an initial solution. A grade of an atom is computed as the sum of this atom’s
contribution to satisfiability of the conjuncts in the WCF formula. An atom corresponds to
a column of the linear system (2). If one coefficient from the column is positive, and located
in a row with > as the relational symbol, it can be used to push toward the satisfiability of
the row. In such a case we add its value to the grade. The < case is not in favor of satisfying
the row, so we subtract the coefficient from the grade. Similar reasoning is applied when the
coefficient is negative. After initial atoms are selected as described, they are all assigned equal
probabilities.

Neighborhood Structures. The neighborhood structures are those induced by the Ham-
ming distance on the solution bit strings. The distance between two solutions is the number
of corresponding bits that differ in their bit string representations. With this selection of
neighborhood structures a shake in the k™ neighborhood of a solution is obtained by inverting
k bits in the solution’s bit string.

3.1 Finding Probabilities by VIND

When we change some atoms there may be a better probabilities assignment in the solution, i.e.,
one that is closer to satisfying the PSAT problem. At this point, we suggest three procedures
within Variable neighborhood descent (VND) framework: two fast heuristics and Nelder Mead
nonlinear programming method.

Nonlinear Optimization Approach. To find a possibly better probabilities assignment
a nonlinear program is defined with the objective function being the distance of the left side
from the right side of the linear system (2). Let = be the current solution, we define an
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unconstrained objective function z to be

L

2(p) =Y _di(p) + 9(p)

=1

where d; is the distance of the left and the corresponding right hand side of the i*® row defined

as
(Zfill cijp; — bi)? if the i'h row is not satisfied,
0 otherwise.

i) = {

and g(p) is the penalty function

L+1
g(p) = m () p) +u2(1=> pi)?
p;<0 =1

with penalty parameters u1 and po. The penalty function is used to transform the constrained
nonlinear problem to the unconstrained one. Since the unconstrained objective function z(p) is
not differentiable a minimization method that does not use derivatives is needed. We applied
the downhill simplex method of Nelder and Mead [7], however, in order to speed-up the search,
this optimization procedure is used only when the VNS algorithm reaches kpax.

Heuristic Approach. Nonlinear optimization has shown to be too time demanding, so we
resorted to a heuristic approach that is used for the majority of the solution optimizations.
The heuristic optimization consists of the following two independent heuristics.

Worst Unsatisfied Projection. The 5 most unsatisfied rows are selected, i.e. the rows with
the largest values d;(p). The equations of these rows define corresponding hyper-planes that
border the solution space. In an attempt to reach the solution space, consecutive projections
of probabilities on the these hyper-planes are performed. Using normal projection the prob-
abilities are changed toward satisfiability of each worst row in a fastest possible manner, i.e.
in the direction normal to that hyper-plane. This procedure is repeated at most 10 times or
until no improvement has been achieved, every time selecting the current 5 worst rows.

Greedy Giveaway. Again, the worst unsatisfied row is selected (the "), but also the most
satisfied row is selected (the j'"). Nonzero coefficients are found in these two rows, but only
those that have zero coefficients at the same position in the other row. For example, if ¢; ;, and
c;; are such coefficients, then p; can be changed with the the most unsatisfied row moving
toward satisfiability, and p; can be changed the opposite way, reducing the satisfiability of the
most satisfied row. This procedure is repeated for all suitable pairs of the coefficients from the
two rows.

These two heuristics together (first one, then the other) yield a great improvement of the
objective function value. Improvements obtained are comparable to those obtained by nonlin-
ear optimization, but they are much faster. This is the reason why the nonlinear optimization
is used only after the N, . neighborhood is unsuccessfully explored.

Local Search. The local search part of the algorithm scans through the first neighborhood
of a solution in pursue of a solution better than the current best. Note that, since the N7
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neighborhood is huge, it would be very inefficient to recompute the probabilities at every point.
Therefore, throughout the local search, the probabilities are are fixed. Solutions are compared
only by the value of the objective function z. This value is kept for the solutions that are in
use. As for the newly generated solutions, the objective value z is computed using the current
probabilities assignment, but since only one bit of one atom is changed, the updating is in
O(L). The VNS implementation used is stated in Algorithm 1.

Algorithm 1 Basic VNS for PSAT

1: 2z < initialSolution(); improve(z, heuristic)
2: while (not done()) do

3: k—1

4: while (k < kmax) do

5: z' — shake(z, k); improve(z’, heuristic); z’’ < localSearch(z’)
6: if (z” better than z) then

7 z « z'’; improve(z, heuristic); k « 1

8: else

9: k—k+1

10: end if

11: end while

12: improve(z, nelder-mead)

13: end while

4 Computational Results

For testing purposes a set of 27 random satisfiable probability WCF formulas has been gen-
erated. Maximal number of summands in weight terms (5), and the maximal number of
disjuncts (D) in DNF's of propositional formulas has been set to 5. Three problems instances
were generated for each of the following (N, L) pairs: (50, 100), (50, 250), (100, 100), (100,
200), (100, 500), (200, 200), (200, 400), (200, 1000). The VNS algorithm was run with kyax set
to 30, and we exit if a feasible solution is found or the method doesn’t advance in 10 consecutive
iterations. The results are shown in Table 1. It can be seen that VNS approach outperforms
our previous checker based on the GA-approach [8] in almost all problem instances, with both
increase in the solving success rate and decrease of the execution time. We are not aware of
any larger PSAT problem instances reported in the literature. For example, L is up to 500 in
[2], and N = 200, L = 800 in [5]. Also, the instances considered in mentioned papers have
a simpler form than the ones used here, with weight terms containing the probability of only
one clause with up to 4 literals.

5 Conclusion

In this paper we suggest VNS based heuristic for solving PSAT problem. This approach allows
us to solve large problem instances more effectively and more efficiently than the recent GA
based heuristic. There are many directions for further research: (i) improve efficiency of our
VNS based heuristic by reducing the large neighborhood or by introducing new ones to be used
within local search; (ii) apply our approach to the so-called interval PSAT [2] in which basic
weight formulas are of the form ¢; <t < ¢o; (iii) try to conjecture some relation between the
parameters and the hardness of the PSAT problem instance (similar to the phase transition
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Table 1: Computational results of the VNS method compared to the previous GA approach.

VNS GA VNS GA

N, L, instance | solved (cpu time) | solved (cpu time) || N, L, instance | solved (cpu time) | solved (cpu time)
50, 100, 1 26/30 (29.46) 23730 (188.07) 100, 500, 1 30/30 (230.97) | 21/30 (11369.29)
50, 100, 2 30/30 (0.23) 27/30 (21.98) 100, 500, 2 23/30 (1930.52) | 19/30 (18932.76)
50, 100, 3 20/30 (17.72) 13/30 (194.04) 100, 500, 3 | 2/30 (30460.00) | 12/30 (17907.2)
50, 250, 1 30,/30 (32.60) 25/30 (504.58) 200, 200, 1 0/30 (O) 0/30 (0)
50, 250, 2 15/30 (14.60) 25/30 (2515.88) 200, 200, 2 30/30 (2.30) 27/30 (253.82)
50, 250, 3 30/30 (11.37) 25/30 (664.7) 200, 200, 3 30/30 (0.27) 28/30 (48.36)
100, 100, 1 30/30 (0.03) 30/30 (6.19) 200, 400, 1 30/30 (9.73) 28,/30 (524.63)
100, 100, 2 30/30 (0.13) 30/30 (13.28) 200, 400, 2 12/30 (6082.67) 16/30 (12167.64)
100, 100, 3 30/30 (0.03) 30/30 (66.85) 200, 400, 3 2/30 (5531.50) | 15/30 (11938.51)
100, 200, 1 30/30 (4.23) 27/30 (858.85) 200, 1000, T | 30/30 (966.47) | 22/30 (68437.78)
100, 200, 2 27/30 (79.07) 10/30 (1395.62) 200, 1000, 2 0/30 (-) 0/30 (-)
100, 200, 3 25/30 (77.04) 10/30 (1235.31) 200, 1000, 3 30/30 (1942.93) 21/30 (56081.48)

phenomenon for SAT). Thus, an exhaustive empirical study should give better insight into
this phenomenon.
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