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Abstract. We present a new method for solving nonlinear integer arith-
metic constraints. The method relies on the MCSat approach to solving
nonlinear constraints, while using branch and bound in a conflict-directed
manner. We report encouraging experimental results where the new pro-
cedure outperforms state-of-the-art SMT solvers based on bit-blasting.

1 Introduction

Integer arithmetic is a natural language to describe problems in many areas of
computing. In fields such as operations research, constraint programming, and
software verification, integers are the core domain of interest. Automation of
reasoning about integers has traditionally focused on linear problems (e.g. [10,
15, 21]). There, powerful methods based on the simplex method and branch-and-
bound perform peculiarly well in practice, even though the underlying problem
is NP-complete [27]. The branch-and-bound methods use a solver for the reals
to find a solution to the problem. If a solution is found in the reals, with a
variable x assigned to a non-integer value v, then the solver performs a “split”
by introducing a lemma (x ≤ bvc)∨(x ≥ dve). Although more powerful methods
are available (e.g., cutting planes [14, 20]), branch and bound is still the most
prominent method for solving integer problems due to its simplicity and practical
effectiveness.

In the case of nonlinear integer arithmetic the hurdles stand much higher.
The celebrated result of Matiyasevich [25] resolved Hilbert’s 10th problem in
the negative by showing that satisfiability in the nonlinear case is undecidable.
This is in contrast to arithmetic over the reals, where the full theory is decidable
[29], and can be solved by effective decision procedures such as virtual term sub-
stitution (VTS) [30], cylindrical algebraic decomposition (CAD) [5], and NLSat
[19]. In this paper, we focus on the quantifier-free theory of nonlinear integer
arithmetic in the usual setting of satisfiability modulo theories (SMT). We are
interested in developing a satisfiability procedure that is effective on problems
arising in practical applications and can be used in a combination framework to
decide problems that involve combinations of theories (e.g., mixed integer-real
arithmetic with uninterpreted functions).
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Most of the current SMT solvers that support nonlinear integer arithmetic
(cvc4 [2], z3 [7], and smt-rat [6], aprove [13]) rely on the bit-blasting ap-
proach described in [12]. In the bit-blasting approach, an integer satisfiability
problem is reduced to a SAT problem by first bounding the integer variables,
and then encoding the problem bit-by-bit into a pure SAT problem. The re-
sulting SAT problem can then be discharged with an off-the-shelf SAT solver.
Although this approach is limited in its deductive power, it is an effective model
finder for practical problems with small solutions. The bit-blasting approach can
not detect unsatisfiability unless the problem is bounded. But, since in practi-
cal applications many problems are mostly linear, some solvers (e.g. z3 and
cvc4) additionally apply linear and interval reasoning to detect some cases of
unsatisfiability. Notably, a recent approach relying on branch-and-bound has
been explored in the context of CAD and VTS [22]. Although interesting, the
approach provides limited improvements and is only used to supplement the
existing techniques.

This paper presents a new method for solving nonlinear integer problems
that is based on the MCSat (model-constructing satisfiability) approach to SMT
[8, 18], where the application of branch-and-bound has more appeal. The new
method reasons directly in the integers, and takes advantage of the MCSat-based
solver for nonlinear real arithmetic [19, 17]. Due to the model-constructing nature
of MCSat, the new method is able to perform the branch-and-bound “splits” in a
conflict-driven manner. The conflict-driven branching strategy allows the solver
to focus on the relevant areas of the search space and forget the splits that
are not useful anymore. This is in contrast to the standard branch-and-bound
approaches in SMT where the splitting strategy is delegated to the whims of the
underlying SAT solver and is therefore hard to control. The new method can be
used in combination with other theories and can also be used to decide mixed
real-integer problems where the bit-blasting approach does not apply.

We start by introducing the relevant background and concepts in Section 2.
We then present relevant elements of MCSat and the main algorithm in Section 3.
We have implemented the new method in the yices2 [9] solver and we present
an empirical evaluation in Section 4 showing that the new method is highly
effective.1

2 Background

We assume that the reader is familiar with the usual notions and terminology
of first-order logic and model theory (for an introduction see e.g. [4]).

As usual, we denote the ring of integers with Z and the field of real numbers
with R. Given a vector of variables x we denote the set of polynomials with
integer coefficients and variables x as Z[x]. A polynomial f ∈ Z[y, x] is of the

1 yices2 won the nonlinear categories of the 2016 SMT competition http://smtcomp.

sourceforge.net/2016/.



form

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0 ,

where 0 < d1 < · · · < dm, and the coefficients ai are polynomials in Z[y] with
am 6= 0. We call x the top variable and the highest power dm is the degree of
the polynomial f . We denote the set of variables appearing in a polynomial f as
vars(f) and call the polynomial univariate if vars(f) = {x} for some variable x.
Otherwise the polynomial is multivariate, or a constant polynomial (if it contains
no variables). A number α ∈ R is a root of the polynomial f ∈ Z[x] iff f(α) = 0.
We denote the set of real roots of a univariate polynomial f as roots(f).

A polynomial constraint C is a constraint of the form f O 0 where f is a
polynomial and O ∈ {<,≤,=, 6=,≥, >}. If a constraint C is over a univariate
polynomial f(x) we also call it univariate. The solution set of a univariate con-
straint C in R is a set of intervals with endpoints in roots(f)∪{−∞,∞} that we
denote by feasible(C). Given a set of univariate constraints C = {C1, . . . , Cn},
we denote the solution set of C by feasible(C) = ∩i feasible(Ci).

An atom is either a polynomial constraint or a Boolean variable, and formulas
are defined inductively with the usual Boolean connectives (∧, ∨, ¬). Given a
formula F (x) we say that a type-consistent variable assignment x 7→ a satisfies
F if the formula F evaluates to > in the standard semantics of Booleans and
integers. If there is such a variable assignment, we say that F is satisfiable,
otherwise it is unsatisfiable.
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Fig. 1. Solution space of constraints
from Example 1.
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Fig. 2. Roots of D(−1, y) and J(−1, y)
from Example 1, with real solutions of
(D < 0) ∧ (J < 0) marked in green.
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Fig. 3. Roots of D(0, y) and J(0, y)
from Example 1, with no solution for
(D < 0) ∧ (J < 0).



Example 1. Consider the “heart” polynomial H(x, y) = (x2 + y2 − 1)3 − x2y3,
and its two instances D(x, y) = H(x + 1, 2y), and J(x, y) = H(2x + 1, 2y − 1).
From D and J we can construct two polynomial constraints

D(x, y) < 0 , J(x, y) < 0 . (1)

The solution space of (1) in R2 is presented in Figure 1. Considering the real
geometry of Figure 1, integer solutions might only exist for x = −1 and x = 0.
Substituting the values −1 and 0 in the constraints gives univariate polynomial
constraints

C = { D(−1, y) < 0, J(−1, y) < 0 } , D = { D(0, y) < 0, J(0, y) < 0 } .

With symbolic root isolation2 for univariate polynomials, we can compute the
real solutions of these sets of constraints as

feasible(C) = (−0.5, 0) ∩ (−0.5, 0.5) = (−0.5, 0) ,

feasible(D) = (−0.5, 0) ∩ (0, 0.5) = ∅ .

Depiction of the roots and feasible intervals of C and D is presented in Figures
2 and 3, respectively.

Since in both cases the solution sets do not include any integer points, we can
conclude that (1) does not have integer solutions and is therefore unsatisfiable.

3 Algorithm

As Example 1 illustrates, one way to solve integer problems is to understand the
real geometry of the underlying problem, and use it to enumerate the potential
integer solutions. The new method we present here explores the real geometry
through the NLSat solver within the MCSat approach to SMT. We start by
introducing the relevant parts of the MCSat framework. The purpose of the
MCSat exposition is to make the paper self-contained and to simplify and gen-
eralize the concepts already presented in [8, 18]. A reader familiar with MCSat
can skip directly to the integer-specific Section 3.4.

The MCSat architecture consists of the core solver that manages the relevant
terms, the solver trail, and the reasoning plugins. The core solver drives the
solving process, and is responsible for dispatching notifications and handling
requests from the plugins, while the plugins reason about the content of the trail
with respect to the set of currently relevant terms. In the case of purely integer
problems, the only relevant plugins are the arithmetic plugin and the Boolean
plugin. The most important duty of the core is to perform conflict analysis when
the reasoning plugins detect a conflict state. In order to check satisfiability of a
formula F , the core solver notifies active plugins about the formula. The plugins
analyze the formula and report all the relevant terms of F back to the core.

2 Root isolation for univariate polynomials with integer coefficients can be done effi-
ciently with algorithms based on Strum sequences or Descartes’ rule of signs [1].



Once the relevant terms are collected, the core adds the assertion (F  >) to
the trail, and the search starts as described in Section 3.5.

In this paper we focus on the details of the base calculus and the needed
integer reasoning capabilities. For more information on other plugins and com-
bination of theories, we refer the interested reader to [18].

3.1 The Trail

The central data structure in the MCSat framework is the solver trail. It is a
generalized version of the trail found in modern SAT solvers and is a represen-
tation of the partial (and potentially inconsistent) model being constructed by
the solver. The purpose of the trail is to maintain the assignment of relevant
terms so that, if the satisfiability algorithm terminates with a positive answer,
the satisfying assignment can simply be read off the trail.

Relevant terms are variables and Boolean terms, excluding negation. Intu-
itively, when invoking theory-specific semantics to evaluate a compound Boolean
term t or its negation ¬t, the relevant terms are the term t itself and the closest
sub-terms of t that are needed to compute its value.

Example 2. Consider the terms t1 ≡ (x + y2 < z) and t2 ≡ (¬b1 ∧ (b2 ∨ b3)).
In order to compute the value of t1 or ¬t1 under integer semantics, we need to
know the values of terms x, y, and z. For evaluation of t2 or ¬t2, we need to
know the values of terms b1 and (b2 ∨ b3). The set of relevant terms therefore
must include the terms {x, y, z, (x+y2 < z), b1, b2, b3, (b2∨ b3), (¬b1∧ (b2∨ b3))}.

A trail is a sequence of trail elements, where each element is either a decision,
or a propagation. A decision is an assignment of a value v to a relevant term t,
denoted as t 7→ v. A propagation is an implied assignment of a value v to a

relevant term t, and E is an explanation of the implication, denoted as t
E
 v.

In both cases, we say that t is assigned in M .3 In order to properly define an
explanation, we first explain how the trail can be used to evaluate terms.

A trail can be seen as a partial model under construction and we can use
the trail to evaluate compound terms based on the values of their sub-terms. A
term t (and ¬t, if Boolean) can be evaluated in the trail M if t itself is assigned
in M , or if all closest relevant sub-terms of t needed for evaluation are assigned
in M (and its value can therefore be computed). Note that some terms can
be evaluated in two different ways (by direct assignment, or by evaluation of
sub-terms), potentially resulting in two different values. In order to account for
this ambiguity, we define an evaluation predicate evaluates[M ](t, v) that returns
true if the term t can evaluate to the value v in trace M . In addition, we
define reasons[M ](t, v) to be the set of relevant sub-terms of t that were used in
evaluating t to v.

Definition 1 (Evaluation Consistency). A trail M is evaluation-consistent
if there is no term that evaluates to two different values in M .
3 For simplicity, we denote formulas asserted to the solver as propagations with no

explanation.



Example 3. In the trail M = J (x < 0) 7→ >, x 7→ 0 K the following hold.

– Terms (x < 0) and x are assigned and can be evaluated to > and 0, respec-
tively, with reasons[M ](x < 0,>) = {x < 0} and reasons[M ](x, 0) = {x}.

– Term (x < 0) can also be evaluated to ⊥, since its closest relevant sub-term
x is assigned, with reasons[M ](x < 0,⊥) = {x}.

– The term (x2 = 0) can be evaluated to > since the only closest relevant
sub-term x is assigned, with reasons[M ](x2 = 0,>) = {x}.

– The term (x2 = 0)∨¬(x < 0) can not be evaluated, since its closest relevant
sub-terms are (x2 = 0) and (x < 0), but (x2 = 0) is not assigned.

– The trail M is not evaluation consistent because the term (x < 0) can
evaluate to two different values.

The following lemma shows that evaluation consistency is a fundamental
property of a trail in model-constructing satisfiability methods.

Lemma 1. Given a formula F , if an evaluation-consistent trail M assigns all
relevant sub-terms of F , and evaluates[M ](F,>), then the model induced by M
satsifies F .

In the MCSat setting, we require the reasoning plugins to ensure evaluation-
consistency for the terms they are responsible for. Usually, a plugin is responsible
for terms relevant to a theory, i.e., constraints of the theory and values for terms
of the theory’s principle types. The plugin must detect evaluation inconsistencies
in the trail for the constraints they are responsible for, and not introduce any
new ones when making assignment decisions.

Explanations. We now define the explanations appearing in the trail propaga-
tions. An explanation E describes a valid substitution of a term with another
term, under given assumptions, and is of the form

[A1, . . . , An] =⇒ {t 7→ s} .

A propagation is only allowed to appear in the trail if the accompanying ex-

planation is valid. In a trail J M, t
E
 v, . . . K, the explanation E is a valid

explanation for the marked propagation if

1. the formula A1 ∧ . . . ∧An =⇒ t = s is valid;
2. each assumption Ai can evaluate to > in M ; and
3. the substitution term s can evaluate to v in M .

The three examples below illustrate the three typical propagation types.

Example 4 (Boolean Propagation). Consider the trail

J (x ∨ y ∨ z) >, x 7→ ⊥, y 7→ ⊥ K .

Boolean propagation over clauses is the core deduction mechanism in a SAT
solver. When all but one literals of a clause are assigned to ⊥ in the trail, we



can propagate that the unassigned literal must have the value >. In the example

above, we can propagate z
E
 >, where the explanation E is

[(x ∨ y ∨ z),¬x,¬y] =⇒ {z 7→ >} .

Example 5 (Evaluation Propagation). Consider the trail J x 7→ 0, y 7→ 1 K and
the atom (x + y < 0). Since all the variables of the atom are assigned in the

trail, we can propagate its value as (x+ y < 0)
E
 ⊥. The explanation E of this

propagation can be [¬(x+ y < 0)] =⇒ {(x+ y < 0) 7→ ⊥}.

Example 6 (Value Propagation). Consider the trail

J (x ≤ z) >, (z ≤ y) >, x 7→ 0, y 7→ 0 K .

Since 0 ≤ z ≤ 0, we can propagate z
E
 0. In order to explain this propagation

we can use the following valid explanation E

[x ≤ z, z ≤ y, x = y] =⇒ {z 7→ x} .

Note that the explanation E introduces a new term in the set of assumptions.

3.2 Unit Reasoning

As Lemma 1 states, by maintaining evaluation consistency, we can guarantee
that the model induced by the trail is a consistent assignment. In order to make
the checking of evaluation consistency more operational, we use evaluation watch
lists and the concept of unit consistency.

Let t0 be a relevant compound term and its closest relevant sub-terms be
t1, . . . , tn. We call w = (eval t0 t1 . . . tn) an evaluation watch-list. Given a
trail M , if all but one elements of w are assigned in M , with ti being the one
unassigned element, we say that w has become unit in M with respect to ti. For
a given a set of relevant terms R, and a term t ∈ R, we denote by units(R, t) the
set of evaluation watch lists for the terms in R that are unit in M with respect
to the term t.

Example 7 (Boolean unit constraints). Consider the clause (x ∨ y). This clause,
with its sub-terms x and y, corresponds to the evaluation watch list

w = (eval (x ∨ y) x y)) .

Now consider the trails

M1 = J (x ∨ y) >, x 7→ ⊥ K , M2 = J x 7→ ⊥, y 7→ ⊥ K .

– In trail M1, variable y is unassigned making w unit with respect to y.
Through Boolean reasoning, we can deduce that variable y has to be as-
signed to >.



– In trail M2, on the other hand, w is unit with respect to term (x∨y). Through
Boolean reasoning, we can deduce that term (x ∨ y) must be assigned to ⊥.

Example 8 (Arithmetic unit constraints). Consider the constraint (x ≤ y2). This
constraint with its relevant sub-terms x and y corresponds to the evaluation
watch list

w = (eval (x ≤ y2) x y) .

Now consider the trails

M1 = J (x ≤ y2) ⊥, x 7→ 2 K , M2 = J x 7→ 2, y 7→ 2 K .

– In trail M1, variable y is unassigned making w unit with respect to y.
Through arithmetic reasoning, we can deduce that y can only be assigned
to a value in

(
−
√

2,
√

2
)
.

– In trail M2, on the other hand, w is unit with respect to (x ≤ y2). Through
arithmetic reasoning, we can deduce that the term (x ≤ y2) must be assigned
to >.

Evaluation watch lists are enough to capture clauses that become unit during
Boolean constraint propagation (BCP) process in modern SAT solvers. But, as
the examples above show, they can be used to reason about arbitrary Boolean
and non-Boolean terms.

Definition 2 (Unit Consistency). Assume a set of relevant terms R and a
trail M . We call R unit consistent in M if, for each term t ∈ R that is not
yet assigned in M , there exists a value v such that the assignment t 7→ v is
evaluation-consistent with M .

In a unit inconsistent trail, there is a term that can not be correctly assigned to
a value. This is a sign that the trail is in conflict and we need to revise it. On
the other hand, in a unit consistent trail, for every unassigned term there is a
value that the term can be assigned to without breaking evaluation consistency.

From an implementation standpoint, evaluation watch lists provide an effi-
cient mechanism for detecting unit inconsistencies due to the following.

1. Unit watch lists can be detected efficiently by watching 2 terms in every
evaluation watch lists (generalization of the two-watched-literals approach
from [26]).

2. Once a watch-list becomes unit, reasoning about the underlying constraint is
simplified by the fact that the constraint involves only one variable (e.g., BCP
on unit clauses, or finding solutions of univariate arithmetic constraints).

3.3 Conflict Analysis

We call a clause C ≡ (L1 ∨ . . .∨Ln) a conflict clause in a trail M , if each literal
Li can be evaluated to ⊥ in M . If the trail M is unit-inconsistent or evaluation-
inconsistent, it is the responsibility of the reasoning plugin that detected the
inconsistency to produce a valid conflict clause.



Example 9 (Boolean conflicts). Consider the trail

M = J (x ∧ y) 7→ >, y E
 ⊥ K .

Trail M is not evaluation consistent since the term (x∧y) can evaluate to both >
and ⊥ is M . The Boolean reasoning plugin can respond to this inconsistency by
returning a clause (¬(x ∧ y) ∨ y). This clause is a conflict clause since all literals
evaluate to ⊥ in M , and is also a valid statement of Boolean logic.

Example 10 (Arithmetic Conflicts). Consider the set of relevant terms R =
{x, y, (y < z), (z < x)} and the trail

M = J (y < z) 7→ >, (z < x) 7→ >, y 7→ 0, x 7→ 0 K .

Using the watch list mechanism, the arithmetic reasoning plugin can detect that
we have two unit constraints with respect to z. These unit constraints on z
imply that z > 0 and z < 0, making the trail M unit inconsistent. The plugin
can respond to this inconsistency by reporting a conflict clause

(y < z) ∧ (z < x)⇒ (y < z) ≡ ¬(y < z) ∨ ¬(z < x) ∨ (y < z) .

This clause is a conflict clause since all of its literals evaluate to ⊥ in M , and it
is also a valid statement of arithmetic.

Explanations of Propagations. During the conflict-analysis process, we resolve
any propagated terms out of the conflict clause. We do so by using the substitu-
tion provided by the explanation. Since the conflicts are always represented by
single clauses, the substitutions appearing in explanations will only be applied
to clauses. Moreover, they will not indiscriminately substitute all occurrences
of the target term. Instead, they will rely on a given trail M to select which
occurrences to replace. We denote this evaluation-based substitution of term t
with term s in a clause C as C{t 7→ s}M , and define it as follows.

(L1 ∨ . . . ∨ Ln){t 7→ s}M = (L1{t 7→ s}M ∨ . . . ∨ Ln{t 7→ s}M )

L{t 7→ s}M =

{
L{t 7→ s} if s ∈ reasons[M ](L,⊥) ,

L otherwise .

Intuitively, the substitution of t by s in the conflict clause C should only replace
the occurrences of t that were needed to evaluate the clause to ⊥.

Using substitution as the basis of our explanations allows us to fully extend
the mechanics of a modern SAT solver to first-order reasoning. In Boolean sat-
isfiability, the main rule of inference is Boolean resolution. Since we are working
with more general theories, we generalize the resolution to a variant of ground
paramodulation [28] we call conflict-directed paramodulation. The paramodula-
tion rule relies on substitution as a core operation. Both resolution and paramod-
ulation rules are shown side-by-side in Figure 4. We denote by resolve[M ](E,C)



A ∨ x ¬x ∨B
A ∨B

A ∨ (t = s) B

A ∨B{t 7→ s}

Fig. 4. Boolean resolution and ground paramodulation rules. The Boolean rule can be
seen as an instance of ground paramodulation with the substitution {x 7→ >}.

the result of applying the paramodulation rule, with evaluation-based substitu-
tion, to the explanation E and clause C. More precisely, if E = [A1, . . . , An] =⇒
{s 7→ t} then

resolve[M ](E,C) = (¬A1 ∨ . . . ∨ ¬An ∨ C{t 7→ s}M ) .

Example 11 (Resolution). Consider the trail

M = J (y = x+ 1) >, (y ≤ z) >, (z ≤ x) >, x 7→ 0, y
E
 1 K .

The first three entries in the trail are assertions that we are checking for satis-
fiability, followed by a decision that assigns x to 0. As x is assigned to 0, the
constraint y = x+ 1 becomes unit in y and implies that y = 1. The explanation
of the propagation is

E : [y = x+ 1] =⇒ {y 7→ x+ 1} .

The constraints (y ≤ z) and (z ≤ x) are unit in variable z and assigned to
>. These two constraint simplify to 1 ≤ z ≤ 0 in M and therefore imply an
inconsistency on variable z. This inconsistency can be explained by a conflict
clause

(y ≤ z) ∧ (z ≤ x)⇒ (y ≤ x) ≡ ¬(y ≤ z) ∨ ¬(z ≤ x) ∨ (y ≤ x) ≡ C0 .

The clause C0 is a valid starting point for conflict analysis because it is a valid
statement and can be evaluated to ⊥ in M .

In order to resolve the conflict, we can go back in the trail and resolve the
trail elements from the conflict clause one by one. The top propagation to resolve

is y
E
 1, and we can use conflict-directed paramodulation to obtain

C1 ≡ resolve[M ](E,C0) ≡ ¬(y = x+ 1) ∨ C0{y 7→ x+ 1}M
≡ ¬(y = x+ 1) ∨ ¬(y ≤ z) ∨ ¬(z ≤ x) ∨ (x+ 1 ≤ x)

≡ ¬(y = x+ 1) ∨ ¬(y ≤ z) ∨ ¬(z ≤ x) .

Note that we apply the substitution only to the last literal in C0 since that is the
only literal where y was used to evaluate it to ⊥, i.e. y ∈ reasons[M ](y ≤ x,⊥).
The new clause C1 is still in conflict (all literals evaluate to ⊥), and we can
resolve the remaining literals as usual to obtain an empty clause and conclude
that the assertions are unsatisfiable.

It is worth noting that the MCSat presentation from [8, 18] did not allow
propagation of non-Boolean values. This was precisely because the underlying
resolution process was based on Boolean resolution.



3.4 Integer Reasoning

The nonlinear integer reasoning we describe bellow assumes an existing MCSat
plugin for reasoning about nonlinear real arithmetic. We use the existing NLSat
plugin [19, 17] to provide this functionality and, in order to extend it to inte-
ger reasoning, we extend the plugin to detect unit inconsistencies over integer
constraints, and explain those inconsistencies with appropriate conflict clauses.

Given a trail M and a variable y, the procedure explainR(M,y) explains the
unit inconsistencies in the reals, and the procedure explainZ(M,y) explains the
unit inconsistencies in the integers. Both procedures return a valid conflict clause,
where the explainR(M,y) procedure is inherited from NLSat.

For each arithmetic variable y, we maintain the set of nonlinear constraints
C = {C1, . . . , Cn} that are unit with respect to y. This means that these con-
straints are asserted in the trail, and that all variables other than y from C are
also assigned in the trail. We can therefore simplify each constraint in C by sub-
stituting the values of assigned variables and obtain a set of nonlinear constraints
Cu that is univariate in y. From there, by isolating the roots of the polynomials
involved, we can compute the set feasible(Cu) of values that y can take in the
context of the current trail. If feasible(Cu) contains an integer point, then the
trail is feasible with respect to the variable y, otherwise the trail is infeasible
and we need to report a conflict.

If feasible(Cu) is an empty set, then there is no possible value for y and we
are in a conflict over R, so we can employ explainR(M,y) to explain the conflict
and produce a valid conflict clause. Otherwise, the solution set for y is a set of
intervals

feasible(Cu) = (l1, u1) ∪ (l2, u2) ∪ · · · ∪ (ln, un) ,

with real endpoints, where no interval contains an integer point. Here, again, we
will reduce conflict explanation to explainR, but by explaining several conflicts.
Consider the (non-integer) point m = (l1 + u1)/2 and the following two trails

M1 = J M, (y ≤ bmc) 7→ > K , M2 = J M, (y ≥ dme) 7→ > K .

These two trails are the branches of M around the point m.
The trail M1 is unit inconsistent in R with respect to y and we can therefore

apply explainR to obtain a conflict clause. Since the inconsistency was initiated by
adding the constraint (y ≤ bmc), the conflict clause must include this constraint
and is therefore of the form

explainR(M1, y) ≡ ¬(y ≤ bmc) ∨D1 .

Moreover, we know that all literals in the clause D1 evaluate to ⊥ in the original
trail M .

In trailM2, the added constraint eliminates the first interval of possible values
for y and we can call the integer conflict explanation explainZ on M2.4 Again,

4 By reducing the number of intervals we guarantee termination.



since the added assertion (y ≥ dme) is necessary for explaining the inconsistency
in M2, the explanation clause for M2 will be of the form

explainZ(M2, y) ≡ ¬(y ≥ dme) ∨D2 ≡ (y ≤ bmc) ∨D2 .

Again, we know that all literals in the clause D2 evaluate to ⊥ in the original
trail M .

In both cases above the explanation clauses are valid in the integers. We can
therefore resolve the common literal with Boolean resolution and obtain a valid
clause that we use as the final explanation

explainZ(M,y) ≡ D1 ∨D2 .

Since literals of both D1 and D2 evaluate to ⊥, the explanation clause is indeed
a valid conflict clause for M being inconsistent with respect to y.

3.5 Main Algorithm

The core algorithm behind MCSat is based on the search-and-resolve loop com-
mon in modern SAT solvers (e.g. [11]). The main loop of the solver performs
a direct search for a satisfying assignment and terminates either by finding an
assignment that satisfies the original problem, or deduces that the problem is
unsatisfiable. The main check() method is presented in Algorithm 1.

Algorithm 1: MCSat::check()

Data: solver trail M , relevant variables/terms to assign in queue
1 while true do
2 propagate()

3 if a plugin detected conflict and the conflict clause is C then
4 R ← analyzeConflict(M , C)

5 if R = ⊥ then return unsat
6 backtrackWith(M , R)

7 else
8 if queue.empty() then return sat
9 x ← queue.pop()

10 ownerOf(x).decideValue(x)

The search process goes forward, making continuous progress, either through
propagation, conflict analysis, or by making a decision. The propagate() proce-
dure invokes the (unit) propagation procedures provided by the enabled plugins.
Each plugin is allowed to propagate new information to the top of the trail. If
a plugin detects an inconsistency, it communicates the conflict to the solver by
producing a conflict clause. This allows the solver to analyze the conflict using
the analyzeConflict() procedure. If conflict analysis learns the empty clause



⊥, the problem is proved unsatisfiable. Otherwise the learned clause is used to
backtrack the search, new relevant terms are collected from the learned clause
R, and the search continues.

If the plugins have performed propagation to exhaustion, and no conflict was
detected, the procedure makes progress by deciding a value for an unassigned
variable. The solver picks an unassigned variable x to be assigned, and relegates
the choice of the value to the plugin responsible for assigning x. A choice of value
for the selected unassigned variable should exist, as otherwise some plugin should
have detected the unit inconsistency. MCSat uses a uniform heuristic to select
the next variable, regardless of its type. The heuristic is based on how often a
variable is used in conflict resolution, and is popularly used in CDCL-style SAT
solvers [26]. If all the relevant variables and terms are assigned to a value, then
the trail is evaluation consistent and represents the satisfying assignment for the
original problem.

4 Experiments

We have implemented the new method on top of NLSat in the MCSat framework
within the yices2 SMT solver [9].5 For representation and advanced operations
on polynomials, such as root isolation and explanation of conflicts through CAD
projection, we rely on the LibPoly library.6

Fig. 5. Distribution of problems with respect to the number of integer variables in-
volved (number of variables on the x axis, and number of problems with this number
of variables on the y axis)

We have evaluated the new procedure on nonlinear integer benchmarks from
the SMT-LIB library [3] (denoted as QF NIA in the library). Most of the bench-
marks in the library come from practical applications and are grouped into the
following problem sets. The AProVE problems encode program termination con-
ditions [13] and have between 2 and 985 integer variables. The calypto problem
set contains problems relevant in hardware equivalence checking, with problems
having between 3 and 50 integer variables. The LassoRanker problems encode

5 Available at http://yices.csl.sri.com/.
6 Available at http://sri-csl.github.io/libpoly/.



termination conditions of lasso-shaped programs and have between 15 and 35
integer variables. The set LCTES contains problems that involve integer division,
with 673 integer variables each. The leipzig problems encode termination con-
ditions for rewriting systems and have between 24 and 2606 integer variables.
The mcm problems encode the MCM problem from [24], and have between 6 and
201 integer variables. The UltimateAutomizer set contains software verification
queries from [16], with problems having between 4 and 144 integer variables.
The UltimateLassoRanker problems encode non-termination of lasso-shaped
programs [23], and have between 38 and 272 integer variables. To give an idea of
the kinds of problems involved, Figure 5 presents distribution of number of prob-
lems by number of integer variables. The largest problems are in the leipzig

set, with 10 problems with over 1000 integer variables and the largest problem
having 2606 variables. 7

To put the results in context, we compare yices2 with other state-of-the-art
solvers that support nonlinear integer arithmetic, namely, aprove [13], smt-rat
[6], and z3 [7]. The results are presented in Table 6. Each solver was run with
a timeout of 40 minutes. Each column of the table corresponds to a different
solver, and each row corresponds to a different problem set. For each problem
set and solver combination we report the number of problems that the tool has
solved, how many of the solved problems were unsatisfiable, and the total time
(in seconds) that the tool took to solve those problems. For a more detailed
comparison a scatter-plot of the performance of yices2 and other solvers is
presented in Figure 7.8

Fig. 6. Experimental evaluation. Each row corresponds to a different problem set.
Each column corresponds to a different solver. Each table entry shows the number of
problems solved, the number of unsatisfiable problems solved, and the total time it
took for the solved instances.

yices2 aprove smt-rat z3

problem set solved unsat time (s) solved unsat time (s) solved unsat time (s) solved unsat time (s)

AProVE (8829) 8727 765 10197 8028 0 7713 8251 223 9080 8310 285 22705

calypto (177) 176 97 370 77 0 1650 168 89 659 175 96 2517

LassoRanker (120) 101 97 664 3 0 5 24 21 9 107 103 8065

LCTES (2) 0 0 0 0 0 0 0 0 0 0 0 0

leipzig (167) 95 1 3541 162 0 3101 161 0 5075 162 0 1080

mcm (186) 12 0 5394 0 0 0 22 0 3622 47 19 29368

UltimateAutomizer (7) 7 7 0 0 0 0 1 1 2 7 7 0

UltimateLassoRanker (32) 32 26 6 6 0 16 30 24 118 32 26 20

9150 993 20172 8276 0 12485 8657 358 18565 8840 536 63755

7 All benchmarks are available at http://smtlib.cs.uiowa.edu/.
8 For convenience, we’ve made the detailed results is available at https://docs.

google.com/spreadsheets/d/1Gu9PZMvgJ6dCjwXnTdggKRUP1uI6kz6lpI2dpWEsWVU.



Fig. 7. Scatter-plot comparison of yices2 and other solvers. Red points represent sat-
isfiable problems, and green points represent unsatisfiable problems. Each axis (log
scale) corresponds to the amount of time (in seconds) that each solver spent on the
problem. Points below the y = x line are the problems where yices2 performs faster,
and points on the top and right edges are problems where one of the solver ran out of
time or terminated for other reasons.



As can be seen from these results, yices2 is very efficient overall and solves
the most problems from the SMT-LIB benchmarks. But, the new method truly
excels on unsatisfiable problems, where it outperforms the other solvers by a
significant margin. The real advantage of the new methods becomes apparent
when solving problems (such as Example 1) where no combination of linear
reasoning, interval reasoning, or bit-blasting can deduce unsatisfiablity (while
other solvers fail on the problem, Example 1 is trivial for yices2). The problems
that yices2 managed to show unsatisfiable contained as many as 468 integer
variables, which is very encouraging considering the complexity of the underlying
decision problem.

5 Conclusion

We have presented a new method for solving nonlinear integer problems based
on the model-constructing approach to SMT and branch and bound. As opposed
to existing methods that mostly rely on bit-blasting, the new method reasons
directly in the integers and performs the branch-and-bound “splits” in a conflict-
driven manner. The new method has been implemented in the yices2 SMT
solver and we have presented an extensive empirical evaluation where the new
method is highly effective, and excels on unsatisfiable problems that can not be
solved by other methods.
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