
SMT Beyond DPLL(T): A New

Approach to Theory Solvers and Theory

Combination

by

Dejan Jovanović

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September 2012

Clark W. Barrett

c© Dejan Jovanović

All Rights Reserved, 2012

Abstract

Satisifiability modulo theories (smt) is the problem of deciding whether a given logical formula

can be satisifed with respect to a combination of background theories. The past few decades

have seen many significant developments in the field, including fast Boolean satisfiability solvers

(sat), efficient decision procedures for a growing number of expressive theories, and frameworks

for modular combination of decision procedures. All these improvements, with addition of robust

smt solver implementations, culminated with the acceptance of smt as a standard tool in the

fields of automated reasoning and computer added verification. In this thesis we develop new

decision procedures for the theory of linear integer arithmetic and the theory of non-linear real

arithmetic, and develop a new general framework for combination of decision procedures. The

new decision procedures integrate theory specific reasoning and the Boolean search to provide

a more powerful and efficient procedures, and allow a more expressive language for explaining

problematic states. The new framework for combination of decision procedures overcomes the

complexity limitations and restrictions on the theories imposed by the standard Nelson-Oppen

approach.

iii

Acknowledgments

I am in debt to many wonderful people without whose support, help, and advice this thesis

would never come to be. I have to start by thanking my parents, Sreten and Smilja, and my

brother Vladan, for their unwavering love and support. The guidance of my academic advisers

Predrag Janičić, Alexander Leitsch, and especially my PhD adviser Clark Barrett, was invaluable

in shaping me as a researcher. I have also benefited greatly from the experiences obtained at

research internships during my PhD, and I would like to thank Pankaj Chauhan, Lucas Bordeaux,

and Leonardo de Moura for their mentorship. I would also like to thank the members of my thesis

committee, Thomas Wies, Benjamin Golberg and Morgan Deters, for their encouragement and

helpful advice. Finally, I also have to thank the many friends that have tolerated me in New

York City, with distinguished honors going to my roommates Deep Ganguli and Joel Alwen, and

my 404 office mates Christopher Conway and Mina Joeng.

iv

Table of Contents

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables viii

List of Appendices ix

Introduction 1

1 Linear Integer Arithmetic 5

1.1 Preliminaries . 8

1.2 A Cutting-Planes Proof System . 9

1.3 The Abstract Search Procedure . 11

1.3.1 Deriving tight inequalities . 14

1.3.2 Main procedure . 19

1.3.3 Termination . 22

1.3.4 Relevant propagations . 25

1.4 Strong Conflict Resolution . 27

1.5 Experimental Evaluation . 35

2 Non-Linear Arithmetic 39

2.1 Preliminaries . 40

2.2 An Abstract Decision Procedure . 44

2.2.1 Termination . 54

2.3 Producing Explanations . 58

2.3.1 Cylindrical Algebraic Decomposition . 58

2.3.2 Projection-Based Explanations . 65

v

2.4 Related Work and Experimental Results . 72

3 Combination of Theories 75

3.1 Preliminaries . 77

3.2 Nelson-Oppen . 79

3.3 Polite Theories . 82

3.3.1 Finite Witnessability Revisited . 86

3.4 New Combination Method . 89

3.4.1 Combination Method . 94

3.4.2 Extension to Polite Combination . 96

3.5 Theory of Uninterpreted Functions . 97

3.5.1 Equality Propagator . 98

3.5.2 Care Function . 99

3.6 Theory of Arrays . 105

3.6.1 A Decision Procedure . 105

3.6.2 Equality Propagator . 110

3.6.3 Care Function . 111

3.7 Experimental Evaluation . 116

Conclusion 120

Appendices 122

Bibliography 156

vi

List of Figures

1.1 Cutting-planes derivation of Example 1.1 . 10

1.2 Experimental results for the integer solver . 38

2.1 Non-linear solver search rules . 48

2.2 Non-linear solver clause satisfaction rules . 49

2.3 Non-linear solver conflict analysis rules . 50

2.4 Diagram for Example 2.5 . 59

2.5 Diagram for Example 2.6 . 62

2.6 Diagram of explanation construction . 67

2.7 Diagram for Example 2.8 . 70

2.8 Experimental results for the non-linear solver . 74

3.1 Experimental results for the combination procedure 119

B.1 Diagram for Theorem B.1. 132

B.2 Diagram for Lemma B.3. 140

vii

List of Tables

1.1 Experimental results for the integer solver . 37

2.1 Experimental results for the non-linear solver . 73

3.1 Experimental results for the combination procedure 117

viii

List of Appendices

A nlsat Implementation Details . 123

B More on Theory Combination . 129

ix

Introduction

At the International Congress of Mathematics in 1928, David Hilbert introduced the Entschei-

dungsproblem (German for “decision problem”). This decision problem that Hilbert was referring

to asks for a precise list of instructions, or in today’s terms an algorithm, such that, given a math-

ematical statement, one can follow these instructions and answer “yes” or “no” depending on the

universal unquestionable truth of the statement. The idea of such a mechanical mathematician

has been floating about since the times of Leibniz, and Hilbert himself held a strong opinion

that such an algorithm should naturally exist. But, a few years later, he was proved wrong with

Alonzo Church and Alan Turing independently showing that there can be no algorithm to solve

the problem in its full generality. These results shook the world of mathematics but, at the same

time, spearheaded a more focused research effort into decision problems where such limits might

not apply. Indeed, if one restricts attention to more limited logical fragments, such algorithms

(decision procedures) do exist. One of the first and most impressive examples of such a decidable

fragment is the first-order theory of real numbers (real closed fields). In the 1930s, Alfred Tarski

[90, 91] famously presented an elegant procedure for deciding any statement in this theory. Since

then, there has been an ongoing quest to see how much and which parts of mathematics can be

decided automatically, giving rise to the field of automated theorem proving.

Tarski’s procedure was quite inefficient in terms of computational complexity, and practically

not very useful. Ultimately, it was a foundational result that identified an important decidable

fragment of mathematics and provided more insight into real closed fields and their properties.

But as computing power became a more accessible commodity, some of these procedures made

their way into the first available computers, and the field started to take shape with efficiency

in mind. The first generation of decision procedures, with actual implementations, started with

Gilbert’s procedure [49], which marked the field with a concrete running implementation. Proce-

dures that followed were traditionally rooted in Herbrand’s results on quantified first-order logic

(e.g. the original Davis-Putnam procedure [32]) and the seminal results of Alan Robinson on

the resolution principle [81]. Since quantified first-order logic is semi-decidable, these resolution-

based procedures could in theory show any theorem to be true, and were therefore called theorem

1

provers. Although, in practice, they were limited to deciding only small academic examples, they

laid the foundations for most of the modern resolution-based theorem provers.

These first attempts at automation of reasoning were generally aimed at uninterpreted quan-

tified first-order logic. Since quantifiers are a part of the logic, when a particular interpretation

(e.g. arithmetic) is needed, one could append to the problem the axioms of interest, try the

general procedure, and hope for the best. This was soon shown to be impractical as many trivial

problems over interpreted theories are quickly out of reach for this approach. Moreover, this ex-

cludes theories that do not have a finite axiomatization, such as the integers. Another possibility

is to try and develop procedures with ingrained knowledge about the theory, as is the case with

Tarski’s procedure, and this is the general topic of this thesis.

One of the simplest interpreted logics is the propositional Boolean logic, where the domain

includes two distinct Boolean constants true and false, and operations including conjunction

(∧), disjunction (∨) and negation (¬), which are interpreted as usual. In this logic, proving a

statement φ over variables p1, . . . , pn (the propositions) to be true amounts to showing that no

assignment of variables to Boolean constants can falsify φ. In other words, it amounts to checking

if there is an assignment of the variables such that ¬φ evaluates to true. This is what we now

know as the classic propositional satisfiability (sat) problem. Although the sat problem is a

canonical np-complete problem [28], and is therefore believed to be of exponential complexity,

there has been an incredible amount of progress in algorithms (sat solvers) that attack it. In fact,

it has become a matter of routine for such solvers to successfully solve problems with hundreds of

thousands of variables. Based on the success of sat, particularly in many applications that are

found in areas of formal verification of hardware and software, it became evident that the concept

of satisfiability checking, i.e. finding solutions or showing that one doesn’t exist, can be used to

model many practically important problems where formal reasoning is desirable. For example,

showing that two circuits φ1 and φ2 are equivalent, a classic problem in hardware verification,

amounts to showing that ¬(φ1 ⇔ φ2) is not satisfiable. It can be argued that sat solvers made

it possible for automated theorem proving to make the leap from a purely academic pursuit to

an endeavor of industrial importance.

It is important to note that the algorithms underlying modern sat solvers are conceptually

different from the symbolic reasoning employed by most theorem provers. First attempts at

2

solving sat were also based on symbolic reasoning [32], relying on the resolution principle at

the Boolean level, but suffered from similar drawbacks as those of the general theorem provers.

Later algorithms adopted a more natural constructive approach, starting from [31]. They try to

construct a satisfying interpretation (a model) of the problem at hand explicitly, by assigning

the variables to particular values. But, when the process of model construction fails, they use

symbolic reasoning in form of Boolean resolution to learn from the failure, backtrack appropriately

and continue from there, trying some other values. It is a basic example of a decision procedure

employing a search for a model complemented with a model-based symbolic conflict analysis.

Looking beyond propositional logic, the next natural step is to extend the satisfiability prob-

lem to allow more expressive languages and semantics, with variables ranging not just over

Booleans but over domains such as, for example, the real numbers, integers, and arrays, and in-

clude the usual operations over these domains. More precisely, we are talking about the quantifier-

free fragment of first-order logic, where interpretations can be restricted to some given background

theories. The satisfiability problem in this setting is called satisfiability modulo theories [6] (smt).

As an example, consider the formula

(x− y = 0) ∧ (f(x) < f(y)) ,

with the variables x and y ranging over integers, and the symbol f an uninterpreted function

over the integers. Checking whether we can assign x and y to integer values and interpret the

function f accordingly, in order to make the formula true, is an instance of the smt problem.1

This particular instance uses as the background theories the theory of linear integer arithmetic

and the theory of uninterpreted functions.

In order to develop a solver for smt problems, for each particular background theory a different

decision procedure must be developed. But, as was the case with sat solvers, the shift to

integration of domain knowledge into the decision procedures provides a more natural and efficient

approach to reasoning, and many efficient decision procedures are readily available. Starting

from the first solvers such as SVC [4] and ICS [43], smt provided such a level of automation that

nowadays an smt solver is an essential tool in many industrial labs dealing with formal reasoning.

The field of smt traditionally focuses on the studies of decision procedures for the individual

1The answer is no, since to satisfy it we must have that x = y but that implies that f(x) = f(y).

3

theories [61, 13] and then separately with ways of combining these decision procedures when

deciding formulas that include multiple background theories [70, 84]. This thesis will present

contributions in both of these areas.

In Chapter 1 and Chapter 2 we will present new decision procedures for two quantifier-free

fragments of arithmetic: linear integer arithmetic and non-linear real arithmetic. Both theories

have been studied extensively, the quantifier-free fragments are decidable, and there are available

decision procedures (e.g. [41, 51, 26, 99, 75]). The procedures we describe, in addition to

improvements in practical efficiency, are also unique in using the sat-style search for a model

complemented with model-based conflict analysis. In comparison, most decision procedures in

the smt context are developed to decide conjunctions of assertions. This is sufficient since the

Boolean structure of the problem can always be relegated to an efficient sat solver, in a framework

commonly commonly called dpll(T) [72, 62]. Although this allows reaping the benefits of the

constant improvements in sat solving, being detached from the Boolean search is a restriction

that can reflect badly on the proof-theoretic properties of the system – there are seemingly simple

problems that can not be solved in sub-exponential time. The procedures we describe, on the

other hand, allow for a tight integration of theory-specific reasoning and the Boolean search that

overcomes these limitations.

In Chapter 3 we then attack the theory combination problem. Given decision procedures for

two distinct theories, one can resort to the classic combination method of Nelson and Oppen

[70] to devise a procedure that can decide the combined theory. The Nelson-Oppen method is

a remarkable result that in a way started the field of smt, but it also has some shortcomings.

First, it fails to address combinations of certain classes of theories (e.g. the theory of bit-vectors)

and, as originally stated, does not scale very well due to inherent complexity issues. In Chapter 3

we develop a new framework for combination of theory solvers. The new combination method is

proved correct even for theories that do not satisfy the properties required by the original Nelson-

Oppen approach and in addition provides a way to overcome some of the inherent complexity

that any combination framework is confronted with.

4

1
Linear Integer Arithmetic

One of the most impressive success stories of computer science in industrial applications was the

advent of linear programming algorithms. Linear programming (lp) became feasible with the

introduction of Dantzig’s simplex algorithm. Although the original simplex algorithm targets

problems over the rational numbers, in 1958 Gomory [50] introduced an elegant extension to the

integer case (ilp). He noticed that, whenever the simplex algorithm encounters a non-integer

solution, one can eliminate this solution by deriving a plane, that is implied by the original

problem, but does not satisfy the current assignment. Incrementally adding these cutting planes,

until an integer solution is found, yields an algorithm for solving linear systems over the integers.

Cutting planes were immediately identified as a powerful general tool and have since been studied

thoroughly both as an abstract proof system [24], and as a practical preprocessing step for hard

structured problems. For such problems, one can exploit the structure by adding cuts tailored

to the problem, such as the clique cuts, or the covering cuts [100], and these cuts can reduce the

search space dramatically.

The main idea behind the algorithm of Gomory, i.e to combine a model searching procedure

with a conflict resolution procedure – a procedure that can derive new facts in order to eliminate

a conflicting candidate solution – is in fact quite general. Somewhat later, for example, in the

field of Boolean satisfiability (sat), there was a similar development with equally impressive

end results. Algorithms and solvers for the sat problem, although dealing with a canonical

np-complete problem, have seen a steady improvement over the years, culminating in thrilling

advances in the last decade. Contrarary to what one would expect of an np-complete problem,

it has become a matter of routine to use a sat solver on problems with millions of variables and

constraints. Of course, it would be naive to attribute one single reason to this success, for there

are many ingredients that contribute to efficiency of modern sat solvers. But, one of the most

conceptually appealing techniques that these sat solvers use is a combination of two orthogonal

views on how to go about solving a satisfaction problem. One is a backtracking search for a

satisfying assignment, as described in the original dpll [31] algorithm. The other is a search for

a proof that there is no solution, in this case a refutation using Boolean resolution, as described

5

in the dp algorithm [32].

In order to combine these two approaches Silva and Sakallah [85] noticed that, although

completely different, they can be used to complement each other in a surprisingly natural manner.

If the search for a satisfying assignments encounters a conflicting state, i.e. one in which some

clause is falsified by the current candidate assignment, one can use resolution to derive a clause,

commonly called an explanation, that succinctly describes the conflict. As is the case with

Gomory’s cutting planes, this explanation clause eliminates the current assignment, so the search

is forced to backtrack and consider a different one. Moreover, since this explanation is a valid

deduction, it can be kept to ensure that the conflict does not occur again. These explanations

can often eliminate a substantial part of the subsequent search tree. The important insight here

is that the application of resolution is limited to the cases where it is needed by the search, or

in other words the search is guiding the resolution. As is usually the case with search algorithms

that attack hard problems, the search process can be greatly improved by applying heuristics at

the appropriate decision points. In the case of the sat problem, the decision of which variable to

try and assign next is one of the crucial ones. With the above idea of search complemented with

conflict resolution in mind, Moskewicz et al. [69] introduced the vsids heuristic. This heuristic

prefers the variables that were involved in the resolution of recent conflicts, effectively adding the

feedback in the other direction, i.e. the resolution is guiding the search. This approach to solving

sat problems is commonly called conflict-directed clause learning (cdcl), and is employed by

most modern sat solvers.

Unsurprisingly, the success of sat solvers has encouraged their adoption in attacking problems

from other domains, including some that were traditionally handled by the ilp solvers [8]. These

ilp problems are the ones where variables are restricted to the {0, 1} domain, and are commonly

referred to as pseudo-Boolean (pb) problems. Although these problems still operate over Boolean

variables, conflict resolution is problematic even at this level [23]. The key problem is to find an

analogue conflict resolution principle for integer inequalities, since the Fourier-Moztkin resolution

is imprecise for the integers, and the deduced inequalities are often too weak to resolve a conflict.

For example, consider the inequalities

3x3 + 2x2 + x1 ≥ 4 , −3x3 + x2 + 2x1 ≥ 1 .

6

If we are in a state with an assignment such that x1 7→ 1 and x2 7→ 1 the left inequality implies

that x3 ≥ 1, and the right inequality implies that x3 ≤ 0. In other words, it is not possible to

extend the partial model to x3 and we are therefore in a conflicting state. We can try to apply

a Fourier-Motzkin resolution step to above inequalities in order to explain the conflict. If we do

so, we eliminate the variable x3 and obtain the inequality 3x2 + 3x1 ≥ 5, which in the integer

domain is equivalent to x2 +x1 ≥ 2. This inequality is not strong enough to explain the conflict,

since it is satisfied in the current state.

In this chapter we will resolve this issue and provide an analogue of Boolean resolution not

just for pb problems, but for the more general ilp case. We achieve this by introducing a tech-

nique for computing tightly-propagating inequalities. These inequalities are used to justify every

propagation performed by our procedure, and have the property that Fourier-Moztkin resolution

is precise for them. Tightly-propagating inequalities guarantee that our conflict resolution can

succinctly explain each conflict.

Using the new conflict resolution procedure we then develop a cdcl-like procedure for solving

arbitrary ilp problems. The procedure is inspired by recent algorithms for solving linear real

arithmetic [67, 60, 30], and has all the important theoretical and practical ingredients that have

made cdcl based sat solvers so successful. As in cdcl, the core of the new procedure consists

of a search for an integer model that is complemented with generation of resolvents that explain

the conflicts. The search process is aided with simple and efficient propagation rules that enable

reduction of the search space and early detection of conflicts. The resolvents that are learned

during analysis of conflicts can enable non-chronological backtracking. Additionally, all resolvents

generated during the search are valid, i.e. implied by the input formula, and not conditioned by

any decisions. Consequently, the resolvents can be removed when not deemed useful, allowing

for flexible memory management by keeping the constraint database limited in size. Finally, all

decisions (case-splits) during the search are not based on a fixed variable order, thus enabling

dynamic reordering heuristics.

Existing ilp solvers can roughly be divided into two main categories: saturation solvers, and

cutting-planes solvers. Saturation solvers are based on quantifier elimination procedures such as

Cooper’s algorithm [29] and the Omega Test [77, 10]. These solvers are essentially searching for a

proof, but have the same drawbacks as the dp procedure. On the other hand, the cutting-planes

7

solvers are model search procedures, complemented with derivation of cutting planes. The main

difference with our procedure is that these solvers search for a model in the rational numbers, and

use the cutting-planes to eliminate non-integer solutions. Moreover, although it is a well-known

fact that for every unsatisfiable ilp problem there exists a cutting-plane proof, to the best of our

knowledge, there is no effective way to find this proof. Most systems based on cutting-planes

thus rely on heuristics, and termination is not guaranteed. In most cases, the problem with

termination is hidden behind the assumption that all the problem variables are bounded, which

is common in traditional practical applications. Even in theory, this is not an invalid assumption

since for any set of inequalities C, there exists an equisatisfiable set C ′, where every variable in

C ′ is bounded [74]. But these theoretical bounds are of little practical value since even for very

small problems (< 10 variables), unless they are of very specific structure [82], the magnitudes

of the bounds obtained this way are beyond any practical algorithmic reasoning.

In contrast, our procedure guarantees termination directly. We describe two arguments that

imply termination. First, we propose a simple heuristic for deciding when a cutting-planes based

approach does not terminate, recognizing variables contributing to the divergence. Then, we show

that, in such a case, one can isolate a finite number of small conflicting cores that are inconsistent

with the corresponding current partial models. These cores consist of two inequalities and at

most one divisibility constraint. Finally, we apply Cooper’s quantifier elimination procedure to

derive a resolvent that will block a particular core from ever happening again, which in turn

implies termination. And, as a matter of practical importance, the resolvents do not involve

disjunctions and are expressed only with valid inequalities and divisibility constraints.

1.1 Preliminaries

As usual, we will denote the set of integers as Z. We assume a finite set of variables X ranging

over Z and use x, y, z, k to denote variables, a, b, c, d to denote constants from Z, and p, q,

r and s for linear polynomials over X with coefficients in Z. In the following, all polynomials

are assumed to be in sum-of-monomials normal form a1x1 + · · ·+ anxn + c. Given a polynomial

p = a1x1 + . . .+ anxn + c, and a constant b, we use bp to denote the polynomial (a1b)x1 + . . .+

(anb)xn + (bc).

8

The main constraints we will be working with in this chapter are linear inequalities, which

are of the form

anxn + · · ·+ a1x1 + c ≤ 0 ,

which we will denote with letters I and J . We assume the above form for all inequalities as,

in the case of integers, we can rewrite p < 0 as p + 1 ≤ 0, and p = 0 as (p ≤ 0) ∧ (−p ≤ 0).

In order to isolate the coefficient of a variable x in a linear polynomial p (inequality I), we will

write coeff(p, x) (coeff(I, x)), and we define coeff(p, x) = 0 if x does not occur in p. We say that

an inequality I is tightly-propagating for a variable x if coeff(I, x) ∈ {−1, 1}.

In addition to inequalities, we also consider divisibility constraints of the form

d | a1x1 + · · ·+ anxn + c ,

where d is a non-zero integer constant. We denote divisibility constraints with the (possibly

subscripted) letter D.

Finally, given a set of constraints C and a constraint I, we use C `Z I to denote that I is

implied by C in the theory of linear integer arithmetic.

1.2 A Cutting-Planes Proof System

In this section, we introduce a cutting-planes proof system that will be the basis of our procedure.

Each rule consists of the premises on the top and derives the conclusion at the bottom of the

rule, with the necessary side-conditions presented in the box on the side.

The Combine rule derives a positive linear combination of two integer inequalities.

I1 I2
Combine if λ1, λ2 > 0

λ1I1 + λ2I2

A special case of the above rule is the resolution step used in the Fourier-Motzkin elimination

procedure that eliminates the top variable from a pair of inequalities −ax+p ≤ 0 and bx−q ≤ 0,

generating the inequality bp− aq ≤ 0.

In the context of integers the main rule, one that is valid for the integers, but not in the

rationals, and is the essence of any cutting-planes proof system, is based on strengthening an

9

-1

0

1

1 2 3

x
3

x2

−3x
3 − 2x

2 − x
1 + 4 ≤ 0

3x3 −
x2 −

2x1 + 1 ≤ 0

−
3
x
2
−

3
x
1

+
5
≤

0

−
x
2
−
x
1

+
2
≤

0

rounding

Figure 1.1: Cutting-plane derivation of Example 1.1.

inequality by rounding. The Normalize rule divides an inequality with the greatest common

divisor of variable coefficients, while rounding the free constant.

a1x1 + . . .+ anxn + c ≤ 0
Normalize if d = gcd(a1, . . . , an)a1

d x1 + . . .+ an
d xn + d cde ≤ 0

Example 1.1. Consider the two inequalities −3x3−2x2−x1 +4 ≤ 0 and 3x3−x2−2x1 +1 ≤

0. We can apply the combine rule with coefficients λ1 = λ2 = 1, simulating Fourier-

Motzkin elimination, to derive an inequality where the top variable x3 is eliminated, and

then normalizing the result, obtaining the following derivation.

−3x3 − 2x2 − x1 + 4 ≤ 0 3x3 − x2 − 2x1 + 1 ≤ 0
Combine −3x2 − 3x1 + 5 ≤ 0

normalize −x2 − x1 + 2 ≤ 0

This derivation is depicted in Figure 1.1, where it is more evident how the rounding helps

eliminate the non-integer parts of the solution space. The shaded part of the figure corre-

sponds to she real solutions of the inequalities at x1 = 0, and the part of this space that

does not contain any integer solutions is removed (cut off) by the derived inequality (cutting

10

plane). Since we are interested only in integer solutions, performing rounding on an inequal-

ity corresponds to pushing the hyper-plane that defines the border of the space defined by

the inequality, until it touches at least one integer point.

1.3 The Abstract Search Procedure

We describe our procedure as an abstract transition system in the spirit of the Abstract dpll

procedure [62]. The states of the transition system are pairs of the form 〈M,C〉, where M is

a sequence of bound refinements, and C is a set of constraints. We use JK to denote the empty

sequence. In this section we assume that all constraints in C are inequalities. Bound refinements

in M can be either decisions or implied bounds. Decided lower and upper bounds are decisions

we make during the search, and we represent them in M as x ≥ b and x ≤ b. On the other hand,

lower and upper bounds that are implied in the current state by some inequality I, are represented

as x ≥I b and x ≤I b. We say that a sequence of bound refinements M is non-redundant if, for

all variables x, the bound refinements in M are monotone, i.e. all the lower (upper) bounds are

increasing (decreasing), and M does not contain the same bound for x, decided or implied.

Let lower(x,M) and upper(x,M) denote the best, either decided or implied, lower and upper

bounds for the variable x in the sequence M , where we assume the usual values of −∞ and ∞

when the corresponding bounds do not exist. We say that a sequence M is consistent if there is no

variable x such that lower(x,M) > upper(x,M). The best lower and upper bound functions can be

lifted to linear polynomials using identities such as: lower(p+ q,M) = lower(p,M) + lower(q,M),

when variables in p and q are disjoint, lower(b,M) = b, and lower(ax,M) = a(lower(x,M)) if

a > 0, and lower(ax,M) = a(upper(x,M)) otherwise.1

Given a sequence of bound refinements M , an inequality I containing a variable x can imply

a bound on x. To capture this we define the function bound(I, x,M) representing the implied

1In general, when estimating bounds of polynomials, since two polynomials might have variables in common,

for a consistent sequence M it holds that, if lower(p,M) and lower(q,M) are defined, then lower(p + q,M) ≥

lower(p,M) + lower(q,M).

11

bound as

bound(ax+ p ≤ 0, x,M) =


−d lower(p,M)

a e if a > 0 ,

−b lower(p,M)
a c if a < 0 .

Definition 1.1 (Well-Formed Sequence). We say a sequence M is well-formed with respect

to a set of constraints C when M is non-redundant, consistent and M is either an empty sequence

or is of the form M = JM ′, γK, where the prefix M ′ is well-formed and the bound refinement γ

is either

• x ≥I b, with I ≡ (−x+ q ≤ 0), C `Z I, and b ≤ lower(q,M ′); or

• x ≤I b, with I ≡ (x− q ≤ 0), C `Z I, and b ≥ upper(q,M ′); or

• x ≥ b, where M ′ contains x ≤I b; or

• x ≤ b, where M ′ contains x ≥I b.

Intuitively, in a well-formed sequence, every decision x ≥ b (x ≤ b) amounts to deciding a

value for x that is equal to the best upper (lower) bound so far in the sequence. Additionally all

the implied bounds are justified by tight inequalities that are implied in Z by the set of constraints

C. We say that a state 〈M,C〉 is well-formed if M is well-formed with respect to C. Note that in

the first two properties, when refining a bound, we allow the new bound b to not necessarily be

the most precise one with respect to I. Although this is unintuitive, the reason for this flexibility

will become apparent later.

Given an implied lower (upper) bound refinement x ≥I b (x ≤I b) and an inequality ax+p ≤ 0,

we define the function resolve that combines (if possible) the tight inequality I ≡ ±x + q ≤ 0

with ax + p ≤ 0 to eliminate the variable x. If the combination is not applicable, resolve just

returns ax+ p ≤ 0. It is defined as

resolve(x ≥I b, ax+ p ≤ 0)

resolve(x ≤I b, ax+ p ≤ 0)
=


|a|q + p ≤ 0 if a× coeff(I, x) < 0 ,

ax+ p ≤ 0 otherwise .

The resolve function will be used in conflict resolution due to the property that it eliminates

the variable x if possible, while keeping valid deductions, and the fact that it preserves (or

12

even improves) the bounds that can be implied. The following lemma states this property more

precisely.

Lemma 1.1. Given a well-formed state 〈M,C〉, with M = JM ′, γK, such that γ is an implied

bound, p ≤ 0 an inequality, and q ≤ 0 ≡ resolve(γ, p ≤ 0) then

C `Z (p ≤ 0) implies C `Z (q ≤ 0) , (1.1)

lower(q,M ′) ≥ lower(p,M) . (1.2)

Proof. Having that γ is an implied bound, we need only consider the following two cases:

1. γ is of the form x ≥I b, where I ≡ (−x+ r ≤ 0);

2. γ is of the form x ≤I b, where I ≡ (x− r ≤ 0);

Let us consider only the first case, as the proof of the second case is similar. Since 〈M,C〉 is a

well-formed state and M = JM ′, γK, we have that b ≤ lower(r,M ′), and that C `Z −x + r ≤ 0,

by definition. We consider two cases based on the sign of the coefficient of x in p.

• If p is of the form −ax + s, for some a ≥ 0 then by the definition of resolve, we have that

resolve(γ, p ≤ 0) = p ≤ 0. Then, q = p, and C `Z (q ≤ 0). Moreover lower(p,M) =

lower(p,M ′) = lower(q,M ′), by the definition of lower.

• If p is of the form ax + s, for some a > 0. By the definition of resolve, we have that

resolve(γ, p ≤ 0) = ar + s ≤ 0. Then, C `Z (q ≤ 0), since q = ar + s is a positive linear

combination of the inequalities p ≤ 0 and −x+ r ≤ 0. Finally, we have that

lower(q,M ′) = lower(ar + s,M ′) ≥ a(lower(r,M ′)) + lower(s,M ′)

≥ a(lower(x,M)) + lower(s,M) = lower(p,M) .

Since in both of the cases the statement holds, this concludes the proof.

13

Example 1.2. In the statement of Lemma 1.1, we get to keep (or improve) the bound

lower(q,M ′) ≥ lower(p,M) only because all of the implied bounds were justified by tightly-

propagating inequalities. If we would allow non-tight justifications, this might not hold.

Consider, for example, a state 〈M,C〉 where

C = {
I︷ ︸︸ ︷

−x ≤ 0,

J︷ ︸︸ ︷
−3y + x+ 2 ≤ 0} , M = Jx ≥I 0, y ≥J 1K ,

and the inequality 1 + 6y ≤ 0, i.e. the propagation of the bound on y is propagated by a

non-tight inequality J . Then, we have that

lower(1 + 6y,M) = 7 ,

resolve(y ≥J 1, 1 + 6y ≤ 0) = 2x+ 5 ≤ 0 .

So, after performing resolution on y using a non-tight inequality J , the inequality became

weaker since i.e lower(2x+ 5, Jx ≥I 0K) = 5 6≥ 7.

Finally, we define a predicate improves(I, x,M) as a shorthand for stating that inequality

I ≡ ax + p ≤ 0 implies a better bound for x in M , but does not make M inconsistent. It is

defined as

improves(I, x,M) =


lower(x,M) < bound(I, x,M) ≤ upper(x,M), if a < 0,

lower(x,M) ≤ bound(I, x,M) < upper(x,M), if a > 0,

false, otherwise.

1.3.1 Deriving tight inequalities

Since we require that all the implied bound refinements in a well-formed sequence M are justified

by tightly-propagating inequalities, and we’ve hinted that this is important for a concise conflict

resolution procedure, we will now show how to deduce such tightly-propagating inequalities when

needed in bound refinement. Given an inequality ±ax + p ≤ 0 such that improves(±ax + p ≤

0, x,M) holds, we show how to deduce a tightly propagating inequality that can justify the

14

improved bound implied by ±ax+ p ≤ 0.

The intuition behind the derivation is the following. Starting with an inequality I ≡ ax +

b1y1 + · · ·+ bnyn ≤ 0, that implies a bound on x, we will transform it using valid deduction steps

into an inequality where all coefficients are divisible by a. We can do this since, in order for I

to be able to imply a bound on x, the appropriate bounds for the variables y1, . . . , yn have to

exist, and moreover these bounds are justified by tightly-propagating inequalities. For example,

the bound on variable y1 might be justified by the inequality J ≡ −y1 + q ≤ 0. If so, we can add

the inequality J to I as many times as needed to make the coefficient with y1 divisible by a.

The deduction is described using an auxiliary transition system with the states of this system

being tuples of the form

〈M ′,±ax+ as⊕ r〉 ,

where a > 0, s and r are polynomials, M ′ is a prefix of the initial M , and we keep the invariant

that

C `Z ±ax+ as+ r ≤ 0, lower(as+ r,M) ≥ lower(p,M) .

The invariant above states that the derived inequality is a valid deduction that implies at least

as strong of a bound on x, while the coefficients to the left of the delimiter symbol ⊕ are divisible

by a.

The initial state for tightening of the inequality ±ax+p ≤ 0 is 〈M,±ax⊕ p〉 and the transition

rules are listed below.

Consume

〈M,±ax+ as⊕ aky + r〉 =⇒ 〈M,±ax+ as+ aky ⊕ r〉

where x 6= y.

Resolve-Implied

〈JM,γK,±ax+ as⊕ p〉 =⇒ 〈M,±ax+ as⊕ q〉

where γ is an implied bound and q ≤ 0 ≡ resolve(γ, p ≤ 0)

Decided-Lower

〈JM,y ≥ bK,±ax+ as⊕ cy + r〉 =⇒ 〈M,±ax+ as+ aky ⊕ r + (ak − c)q〉

where y ≤I b in M , with I ≡ y + q ≤ 0, and k = dc/ae.

15

Decided-Lower-Neg

〈JM,y ≥ bK,±ax+ as⊕ cy + r〉 =⇒ 〈M,±ax+ as⊕ cq + r〉

where y ≤I b in M , with I ≡ y − q ≤ 0, and c < 0.

Decided-Upper

〈JM,y ≤ bK,±ax+ as⊕ cy + r〉 =⇒ 〈M,±ax+ as+ aky ⊕ r + (c− ak)q〉

where y ≥I b in M , with I ≡ −y + q ≤ 0, and k = bc/ac.

Decided-Upper-Pos

〈JM,y ≤ bK,±ax+ as⊕ cy + r〉 =⇒ 〈M,±ax+ as⊕ cq + r〉

where y ≥I b in M , with I ≡ −y + q ≤ 0, and c > 0.

Round (and terminate)

〈M,±ax+ as⊕ b〉 =⇒ ±x+ s+ db/ae ≤ 0

We use tight(I, x,M) to denote the tightly propagating inequalities derived using some strat-

egy for applying the transition rules above.

Example 1.3. Given a well-formed state 〈M,C〉, where

C = {−y ≤ 0︸ ︷︷ ︸
I1

,−x+ 2 ≤ 0︸ ︷︷ ︸
I2

,−y + 7 + x ≤ 0︸ ︷︷ ︸
I3

,−3z + 2y − 5x ≤ 0︸ ︷︷ ︸
I4

}

M = J y ≥I1 0, x ≥I2 2, y ≥I3 9, x ≤ 2 K

In this state we have that bound(I4, z,M) = 3, that is, I4 is implying a lower bound of z in

the current state Since I4 is not tightly-propagating on z. we now derive a tight inequality

that justifies this lower bound by applying the rules as we go backwards in the trail of bound

refinements.

〈J y ≥I1 0, x ≥I2 2, y ≥I3 9, x ≤ 2 K,−3z ⊕ 2y − 5x〉

=⇒ Decided-Upper-Pos

x ≤ 2 is a decided bound, M contains implied bound x ≥I2 2.

We make the coefficient of x divisible by 3 by adding I2 ≡ −x+ 2 ≤ 0.

16

〈J y ≥I1 0, x ≥I2 2, y ≥I3 9 K,−3z − 6x⊕ 2y + 2〉

=⇒ Resolve-Implied

We eliminate y by adding two times I3 ≡ −y + 7 + x ≤ 0.

〈J y ≥I1 0, x ≥I2 2 K,−3z − 6x⊕ 2x+ 16〉

=⇒ Resolve-Implied

We eliminate x in 2x+ 16 by adding two times I2 ≡ −x+ 2 ≤ 0.

〈J y ≥I1 0 K,−3z − 6x⊕ 20〉

=⇒ Round

−z − 2x+ 7 ≤ 0

The derived tightly propagating inequality −z − 2x + 7 ≤ 0 implies the same lower bound

bound(−z − 2x+ 7 ≤ 0, z,M) = 3 for z.

The following lemma shows that by deriving tightly propagating inequalities using the system

above we do not lose precision in terms of the bounds that the inequality can imply.

Lemma 1.2. Given a well-formed state 〈M,C〉 and an implied inequality I, i.e. such that C `Z

I, and improves(I, x,M) the procedure for deriving tightly-propagating inequalities terminates

with a tight-inequality J such that C `Z J and

• if I improves the lower bound on x, then bound(I, x,M) ≤ bound(J, x,M),

• if I improves the upper bound on x, then bound(I, x,M) ≥ bound(J, x,M).

Proof. Note that for any inequality I ≡ ±ax+ p ≤ 0 as in the statement of the lemma, i.e. one

that improves a bound of x in M , the bounds of all variables from I, except for maybe x, are

justified in M . Moreover, since we’re in a well-formed state, all of the inequalities that justify

these bounds are also tightly-propagating.

For the initial state 〈M,±ax⊕ p〉, all the variables in p have a bound in M . The transition

system then keeps the following invariants for any reachable state 〈Mk,±ax+ q ⊕ r〉:

1. all the variables in r have a bound in Mk;

17

2. all the variables in q have a bound in M ;

3. all the coefficients in q are divisible by a; and

4. lower(q + r,M) ≥ lower(p,M).

Proving these invariants is an easy exercise, with the interesting and important case being (4),

which follows in a manner similar to Lemma 1.1. The cases where the transition rule eliminates

a variable follow as in Lemma 1.1. Assume therefore that we are in the case when we don’t

eliminate the top variable. For example, assume a state where the decided lower bound of y in

Mk (and hence in M) is at b.

〈JMk−1, y ≥ bK,±ax+ q ⊕ r〉 ,

Then y must have an implied upper bound y ≤I b in Mk−1, and we add a positive multiple of a

tightly-propagating inequality I ≡ y+ t ≤ 0. Note that in Mk−1, by property of implied bounds

in the definition of the well-formed state, we have that b ≥ upper(−t,M) = −lower(t,M). Now,

for any λ > 0 we then have

lower(q + r + λ(y + t),M) ≥ lower(q + r,M) + λ(lower(y,M) + lower(t,M)) (1.3)

≥ lower(q + r,M) + λ(lower(y,M) + lower(t,Mk−1)) (1.4)

≥ lower(q + r,M) + λ(lower(y,M)− b) (1.5)

= lower(q + r,M) . (1.6)

The inequality (1.3) holds just through computation of lower and it is not an equality as some the

variables in the terms might be shared, as discussed in the definition of lower. The inequality (1.4)

holds as lower bounds on terms can only increase in a well-formed state andMk−1 is a subsequence

of M . The inequality (1.5) holds since as discussed above we have that lower(t,Mk−1) ≥ −b.

Finally, (1.6) holds simply be definition of lower when a variable has a decided value in a well-

formed state.

The improvement of bounds stated in the lemma then easily follows from (4). Termination

follows directly, as at least one of the rules is always applicable (using (1)), and each rules either

consumes a part of the sequence M or terminates. The length of the derivation is therefore

bounded by the length of the sequence M .

18

Note that in the statement above, improves(J, x,M) does not necessarily hold, although the

implied bound is the same or better. This is because the improves predicate requires the new

bound to be consistent, and the derived inequality might in fact imply a stronger bound that

can be in conflict.

1.3.2 Main procedure

We are now ready to define the main transition system of the decision procedure. In the following

system of rules, if a rule can derive a new implied bound x ≥I b or x ≤I b, the tightly propagating

inequality I is written as if computed eagerly. This simplification clarifies the presentation, but

we can use them as just placeholders and compute them on demand, which is what we do in our

implementation. The transition rules alternate between the search phase with states denoted

as 〈M,C〉, where new bounds are propagated and decisions on variables are made, and the

conflict resolution phase with states denoted as 〈M,C〉 ` I, where we try to explain the conflict

encountered by the search phase.

Decide

〈M,C〉 =⇒ 〈JM,x ≥ bK, C〉 if lower(x,M) < b = upper(x,M)

〈M,C〉 =⇒ 〈JM,x ≤ bK, C〉 if lower(x,M) = b < upper(x,M)

Propagate

〈M,C ∪ {J}〉=⇒ 〈JM,x ≥I bK, C ∪ {J}〉 if



coeff(J, x) < 0

improves(J, x,M),

I = tight(J, x,M),

b = bound(J, x,M).

〈M,C ∪ {J}〉=⇒ 〈JM,x ≤I bK, C ∪ {J}〉 if



coeff(J, x) > 0

improves(J, x,M),

I = tight(J, x,M),

b = bound(J, x,M).

Forget

〈M,C ∪ {J}〉=⇒ 〈M,C〉 if C `Z J , and J 6∈ C

19

Conflict

〈M,C〉 =⇒ 〈M,C〉 ` p ≤ 0 if p ≤ 0 ∈ C, lower(p,M) > 0

Learn

〈M,C〉 ` I =⇒ 〈M,C ∪ I〉 ` I if I 6∈ C

Resolve

〈JM,γK, C〉 ` I =⇒ 〈M,C〉 ` resolve(γ, I) if γ is an implied bound.

Skip-Decision

〈JM,γK, C〉 ` p ≤ 0 =⇒ 〈M,C〉 ` p ≤ 0 if

 γ is a decided bound

lower(p,M) > 0

Unsat

〈JM,γK, C〉 ` b ≤ 0 =⇒ unsat if b > 0

Backjump

〈JM,γ,M ′K, C〉 ` J =⇒ 〈JM,x ≥I bK, C〉 if



γ is a decided bound

coeff(J, x) < 0

improves(J, x,M),

I = tight(J, x,M),

b = bound(J, x,M).

〈JM,γ,M ′K, C〉 ` J =⇒ 〈JM,x ≤I bK, C〉 if



γ is a decided bound

coeff(J, x) > 0

improves(J, x,M),

I = tight(J, x,M),

b = bound(J, x,M).

When applying the rules above, the newly introduced inequalities are either tight versions

of existing inequalities, or introduced during conflict resolution. In both cases we can see from

Lemma 1.1 and Lemma 1.2 and simple inductive reasoning that these new inequalities are implied

by the original problem.

Theorem 1.2 (Soundness). For any derivation sequence 〈JK, C0〉 =⇒ S1 =⇒ · · · =⇒ Sn. If

20

Sn is of the form 〈Mn, Cn〉, then C0 and Cn are equisatisfiable. If Sn is of the form 〈Mn, Cn〉 ` I,

then C0 implies I, and C0 and Cn are equisatisfiable. Moreover, 〈Mn, Cn〉 is well-formed.

Example 1.4. Consider the set of inequalities C

{−x ≤ 0︸ ︷︷ ︸
I1

, 6x− 3y − 2 ≤ 0︸ ︷︷ ︸
I2

, −6x+ 3y + 1 ≤ 0︸ ︷︷ ︸
I3

}

Now we show C to be unsatisfiable using our abstract transition system.

〈JK, C〉

=⇒ Propagate x using I1 ≡ −x ≤ 0

〈Jx ≥I1 0K, C〉

=⇒ Decide x

〈Jx ≥I1 0, x ≤ 0K, C〉

=⇒ Propagate y using I3 ≡ −6x+ 3y + 1 ≤ 0

〈
M︷ ︸︸ ︷

Jx ≥I1 0, x ≤ 0, y ≤J −1K, C〉, where J = tight(I3, y, Jx ≥I1 0, x ≤ 0K)

〈Jx ≥I1 0, x ≤ 0K, 3y ⊕−6x+ 1〉

=⇒ Consume

〈Jx ≥I1 0, x ≤ 0K, 3y − 6x⊕ 1〉

=⇒ Round

J ≡ y − 2x+ 1 ≤ 0

=⇒ Conflict using I2 ≡ 6x− 3y − 2 ≤ 0, since lower(6x− 3y − 2,M) > 0

〈Jx ≥I1 0, x ≤ 0, y ≤J −1K, C〉 ` 6x− 3y − 2 ≤ 0

=⇒ Resolve resolve(y ≤J −1, 6x− 3y − 2 ≤ 0) = (3(−2x+ 1) + 6x− 2 ≤ 0)

〈JM,x ≤ 0K, C〉 ` 1 ≤ 0

=⇒ Unsat

unsat

21

Slack Introduction. One of the obvious drawbacks of the presented system is that it is easy to

find a system of constraints where the transition system can not make any progress, for example

if the constraints don’t contain any explicit variable bounds. This can be fixed by introducing

fresh variables that will create artificial bounds that can start-up the computation.

Given a state S = 〈M,C〉, we say that a variable x is unbounded at S if lower(x,M) = −∞

and upper(x,M) = ∞. We also say that x is stuck at state S if it is unbounded and the

Propagate rule cannot be used to deduce a lower or upper bound for x. A state S is stuck if all

undecided variables in S are stuck, and no inequality in C is false in M . That is, there is no

possible transition for a stuck state S. Before we describe how we avoid stuck states, we make

the observation that for every finite set of inequalities C, there is an equisatisfiable set C ′ such

that for every variable x in C ′, (−x ≤ 0) ∈ C ′. The idea is to replace every occurrence of x in

C with x+ − x−, and add the inequalities −x+ ≤ 0 and −x− ≤ 0. Instead of using this eager

preprocessing step, we use a lazy approach, where slack variables are dynamically introduced.

Suppose, we are in a stuck state 〈M,C〉, then we simply select an unbounded variable x, add

a fresh slack variable xs ≥ 0, and add new inequalities to C that “bound” x in the interval

[−xs, xs]. This idea is captured by the following rule:

Slack-Intro

〈M,C〉 =⇒ 〈M,C ∪ {x− xs ≤ 0,−x− xs ≤ 0,−xs ≤ 0}〉 if

 〈M,C〉 is stuck

xs is fresh

Note that it is sound to reuse a slack variable xs used for “bounding” x, to bound some other

variable y, and this is what we do in our implementation.

1.3.3 Termination

We say a set of inequalities C is a finite problem if for every variable x in C, there are two integer

constants a and b such that {x − a ≤ 0,−x + b ≤ 0} ⊆ C. We say a set of inequalities C is an

infinite problem if it is not finite. That is, there is a variable x in C such that there are no values

a and b such that {x − a ≤ 0,−x + b ≤ 0} ⊆ C. We say an inequality is simple if it is of the

form x − a ≤ 0 or −x + b ≤ 0. Let Propagate-Simple be a rule such as Propagate, but with an

extra condition requiring J to be a simple inequality. We say a strategy for applying the rules is

22

reasonable if a rule R different from Propagate-Simple is applied only if Propagate-Simple is not

applicable. Informally, a reasonable strategy prevents the generation of derivations where simple

inequalities are ignored and C is essentially treated as an infinite problem.

Theorem 1.3 (Termination). Given a finite problem C, and a reasonable strategy, there is

no infinite derivation sequence starting from 〈JK, C0〉.

Proof. The proof of the statement is an adaptation of the proof used to show termination of the

Abstract DPLL [72]. We say that a state 〈Mi, Ci〉 is reachable if there is a derivation sequence

〈JK, C〉 =⇒ · · · =⇒ 〈Mi, Ci〉 .

A sequenceM is bounded if there is no variable x in C such that lower(x,M) = −∞ or upper(x,M) =

∞. Given a derivation T starting at 〈JK, C〉, let 〈M0, C0〉 be the first state in T where Propagate-

Simple is not applicable. Then, M0 is bounded because C is a finite problem. We say 〈M0, C0〉

is the actual initial state of T .

The level of a state 〈Mi, Ci〉 is the number of decided bounds in Mi. The level of any

reachable state 〈Mi, Ci〉 is ≤ n, where n is the number of variables in C. Let subseqj(M) denote

the maximal prefix subsequence of M of level ≤ j. Let V denote the set of variables used in C.

First, we define an auxiliary function w(M) as

w(M) =


∞ if M is unbounded,∑
x∈V (upper(x,M)− lower(x,M)) otherwise.

Now, we define a function weight that maps a sequence M into a (n + 1)-tuple, where n is the

number of variables in C. It is defined as

weight(M) = 〈w(subseq0(M)), w(subseq1(M)), . . . , w(subseqn(M))〉 .

Given two bounded sequences M and M ′, we say M ≺≺M ′ if weight(M) <lex weight(M ′), where

<lex is the lexicographical extension of the order < on natural numbers.

For any transition 〈Mi, Ci〉 =⇒ 〈Mi+1, Ci+1〉 performed by Decide, Propagate or Propagate-

Simple, as these rules only improve the variable bounds, if Mi is bounded, then Mi+1 is also

bounded and Mi+1 ≺≺Mi.

23

Now let’s consider the conflict resolution rules. The conflict resolution process starts from a

state 〈M,C〉 ` I and then traverses over the elements of the trail backwards. Since the size of

the sequence M is finite, conflict resolution is always a finite sequence of steps. For each conflict

resolution step of the transition system

〈Mk, Ck〉 ` p ≤ 0 =⇒ 〈Mk+1, Ck+1〉 ` q ≤ 0 ,

the sequence Mk+1 is a subsequence of Mk, and the rules keep as invariant the fact that q ≤ 0

is a valid deduction and lower(q,M) > 0. For applications of the Resolve rule this follows from

Lemma 1.1 and Lemma 1.2, and for applications of the Skip-Decision rule this follows from the

preconditions of the rule itself.

Let’s show that we can not get stuck in conflict analysis, i.e. that a transition using the

conflict resolution rules is always possible. Assume that no rule other than possibly Backjump

is applicable, i.e. that we are in a state 〈Mk, Ck〉 ` p ≤ 0 where Mk = JM ′k, γK, the top trail

element γ is a decided bound (Resolve is not applicable), and lower(p,M ′k) ≤ 0 (Skip-Decision

is not applicable). If γ = x ≤ b, then we know that lower(x,M ′k) = b and, additionally, that

p = −ax + q for some a > 0 as otherwise we would have that lower(p,Mk) = lower(p,M ′k) > 0.

We can now compute

0 < lower(−ax+ q,Mk) = −aupper(x,Mk) + lower(q,Mk) = −ab+ lower(q,M ′k) , (1.7)

and therefore lower(q,M ′k) > ab. From here we see that −ax + q ≤ 0 implies a lower bound

bound(p ≤ 0, x,M ′k) > b on x, improving on the current lower(x,M ′k) = b. For the Backjump

rule to be applicable we must also show that the new bound does not exceed any existing upper

bounds in M ′k. Assume the opposite, i.e. that

upper(x,M ′k) < bound(p ≤ 0, x,M ′k) =

⌈
lower(q,M ′k)

a

⌉
.

But then we can conclude that

lower(−ax+ q,M ′k) = −aupper(x,M ′k) + lower(q,M ′k)

> −aupper(x,M ′k) + aupper(x,M ′k) = 0 .

This contradicts our assumption and therefore the new bound does not exceed the existing bound

24

and the Backjump rule is applicable. Similarly, if γ = x ≥ b we can conclude that the Backjump

rule is applicable.

The only way to exit the conflict analysis state and get back into the search mode, is by an

application of the Backjump rule. But, for any transition 〈Mi, Ci〉 ` p ≤ 0 =⇒ 〈Mi+1, Ci+1〉

performed by the Backjump rule, since this transition can backtrack at most up to the first

decision and will therefore not eliminate the bounded initial state M0, if subseq0(Mi) is bounded,

then Mi+1 is also bounded and Mi+1 ≺≺ Mi. Tough Backjump may eliminate several bounds

from Mi, it improves the bound of a variable in some lower level. Since, for finite problems, the

actual initial state 〈M0, C0〉 is bounded and ≺≺ is well-founded for bounded states, we have that

any derivation will eventually terminate.

As mentioned in the introduction, for infinite problems a termination argument can be con-

structed using the fact that for any set of inequalities C, there is an equisatisfiable C ′ where

every variable in C ′ is bounded, but it has little practical value. In Section 1.4, we describe an

extra set of rules that guarantee termination even for infinite problems.

1.3.4 Relevant propagations

Unlike in sat and Pseudo-Boolean solvers, the Propagate rules cannot be applied to exhaustion for

infinite problems. If C is unsatisfiable, the propagation rules may remain applicable indefinitely.

Example 1.5. Consider the following set of (unsatisfiable) constraints

C = {
I︷ ︸︸ ︷

−x+ y + 1 ≤ 0,

J︷ ︸︸ ︷
−y + x ≤ 0,

K︷ ︸︸ ︷
−y ≤ 0} .

Starting from the initial state 〈JK, C〉, it is possible to generate the following infinite sequence

of states by only applying the Propagate rule.

〈JK, C〉 =⇒ 〈Jy ≥K 0K, C〉 =⇒ 〈Jy ≥K 0, x ≥I 1K, C〉

=⇒ 〈Jy ≥K 0, x ≥I 1, y ≥J 1K, C〉 =⇒

〈Jy ≥K 0, x ≥I 1, y ≥J 1, x ≥I 2K, C〉 =⇒ . . .

25

Theorem 1.4. The Propagate rule cannot be applied indefinitely if the initial set of constraints

C is satisfiable.

The theorem above holds since in the case of integers, the feasible space of the constraints C

prevents the bounds on variables to be improved indefinitely. Intuitively, since no propagation can

remove a solution (propagations are sound), and a solution exists, we can not increase (decrease)

a lower (upper) of a variable indefinitely as this would eventually remove the solution. A theorem

similar to the above does not hold for real arithmetic, where due to the density of the domain

even for satisfiable problems these infinite propagation sequences are possible.

To try and avoid the infinite loops we adopt a simple heuristic. Let nb(x,M) denote the

number of lower and upper bounds for a variable x in the sequence M . Given a state S = 〈M,C〉,

some δ > 0, and a bound on a number of propagations Max, we say a new lower bound x ≥I b

is δ-relevant at S if

1. upper(x,M) 6= +∞, or

2. lower(x,M) = −∞, or

3. lower(x,M) + δ|lower(x,M)| < b and nb(x,M) < Max.

The intuition for the above definition of relevancy is as follows. If x has a upper bound,

then any lower bound is δ-relevant because x becomes bounded, and termination is not an issue

for bounded variables. If x does not already have a lower bound, then any new lower bound

x ≥I b is relevant. Finally, the third case states that the magnitude of the improvement must

be significant and the number of bound improvements for x in M must be smaller than Max.

In theory, to prevent non-termination during bound propagation we only need the cutoff Max.

The condition lower(x,M)+δ|lower(x,M)| < b is pragmatic, and is inspired by an approach used

in [1]. The idea is to block any bound improvement for x that is insignificant with respect to the

already known bound for x.

Even when only δ-relevant propagations are performed, it is still possible to generate an

infinite sequence of transitions. The key observation is that Backjump is essentially a propagation

rule, that is, it backtracks M , but it also adds a new improved bound for some variable x. It

26

is easy to construct non-terminating examples, where Backjump is used to generate an infinite

sequence of non δ-relevant bounds.

1.4 Strong Conflict Resolution

In this section, we extend our procedure to be able to handle divisibility constraints, by adding

propagation, solving and consistency checking rules specific to divisibility constraints into our

system. Then we show how to ensure that our procedure terminates even in cases when some

variables are unbounded.

Solving divisibility constraints. We will add one proof rule to the proof system, in order to

help us keep the divisibility constraints in a normal form. As Cooper originally noticed in [29],

given two divisibility constraints, we can always eliminate a variable from one of them, obtaining

equivalent constraints.

d1 | a1x+ p1, d2 | a2x+ p2
div-solve if

d = gcd(a1d2, a2d1)

α(a1d2) + β(a2d1) = dd1d2 | dx+ α(d2p1) + β(d1p2)

d | a2p1 − a1p2

Since we could not find the proof of correctness of the above rule in the literature, we provide

the following simple one.

Lemma 1.3. Consider the following two divisibility constraints

d1 | a1x+ p1 , (1.8)

d2 | a2x+ p2 . (1.9)

These are equivalent to the divisibility constraints

d1d2 | dx+ α(d2p1) + β(d1p2) , (1.10)

d | a2p1 − a1p2 , (1.11)

where d = gcd(a1d2, a2d1) and α(a1d2) + β(a2d1) = d.

27

Proof. (⇒) Assume (1.8) and (1.9). Multiplying them with d2 and d1, receptively, we also have

that d1d2 | d2a1x + d2p1 and d1d2 | d1a2x + d1p2. We can add these two together, multiplied

with α and β to obtain (1.10).

On the other hand, multiplying (1.8) and (1.9) with a2 and a1, respectively, we get that

d1a2 | a1a2x+ a2p1 and d2a1 | a1a2x+ a1p2. Now, since d = gcd(a1d2, a2d1) we also know that

d | a1a2x+ a2p1 and d | a1a2x+ a1p2. Subtracting these two we get (1.11).

(⇐) Assume (1.10) and (1.11). Using the assumption that d = α(a1d2) + β(a2d1), we can be

rewrite them as

d1d2 | αd2(a1x+ p1) + βd1(a2x+ p2) , (1.12)

d | a2(a1x+ p1)− a1(a2x+ p2) . (1.13)

Using the first direction applied to above (taking a1x+ p1 as the variable) we get that

dd2 | gcd(d1d2a2, αdd2) | a2βd1(a2x+ p2) + αd2a1(a2x+ p2) ,

dd2 | d(a2x+ p2) ,

form which we get (1.9). Similarly, assuming a2x+ p2 is the variable, we get (1.8).

We use the above proof rule in our transition system to enable normalization of divisibility

constraints by variable elimination.

Solve-Div

〈M,C〉 =⇒ 〈M,C ′〉 if


D1, D2 ∈ C,

(D′1, D
′
2) = div-solve(D1, D2),

C ′ = C \ {D1, D2} ∪ {D′1, D′2}.

Unsat-Div

〈M,C ∪ {(d | a1x1 + · · ·+ anxn + c)}〉 =⇒ unsat if gcd(d, a1, . . . , an) - c

Propagation. With divisibility constraints as part of our problem, we can now achieve even

more powerful bound propagation. We say a variable x is fixed in the state S = 〈M,C〉 if

upper(x,M) = lower(x,M). Similarly a polynomial p is fixed if all of its variables are fixed. To

clarify the presentation, for fixed variables and polynomials we write val(x,M) and val(p,M) as

a shorthand for lower(x,M) and lower(p,M).

28

Let 〈M,C〉 be a well-formed state, let D ≡ (d | ax+ p) ∈ C be a divisibility constraint with

a > 0, d > 0, and assume x has a lower bound x ≥I b ∈ M with I ≡ (−x + q). Assume,

additionally, that p is fixed, i.e. assume that val(p,M) = k. If the bound b does not satisfy the

divisibility constraint, i.e. if d - ab+ k = lower(ax+ p,M), we can deduce a better lower bound

on x to be the next point that satisfies the divisibility constraint.

Let c be the first such point, i.e. the smallest c > b with d | ac + k. Since 〈M,C〉 is

a well formed state we know that b ≤ lower(q,M ′) for some prefix M ′ of M , and therefore

b ≤ lower(q,M). Now, in order to satisfy the divisibility constraint we must have an integer z

such that dz = ax+ p, and therefore I1 ≡ −dz + ax+ p ≤ 0. Note that b, the lower bound of x,

does not satisfy the divisibility constraint, and therefore this inequality implies a bound on z that

requires rounding. Since p is fixed, and we have a lower bound on x, we can now use our system

for deriving tight inequalities to deduce a tightly propagating inequality I2 ≡ −z + r ≤ 0 that,

in the state, bounds z from below. Moreover, by using a strategy that never uses the Consume

rule on the variable x, we can ensure that r does not include x. From Lemma 1.2 we can now

conclude that

lower(r,M) ≥
⌈

lower(ax+ p,M)

d

⌉
=

⌈
ab+ k

d

⌉
=
ac+ k

d
∈ Z ,

with the last inference resulting by choice of c. Now, we use the new inequality I2 to derive an

inequality I3 that provides a new bound on x.

I2︷ ︸︸ ︷
−z + r ≤ 0

−dz + dr ≤ 0

D︷ ︸︸ ︷
dz = ax+ p

dz − ax− p ≤ 0
Combine −ax+ dr − p ≤ 0︸ ︷︷ ︸

I3

Since we know that r and p don’t include x (and therefore x did not get eliminated) we can

compute the bound that this inequality infers on x in the current model

bound(I3, x,M) =

⌈
lower(dr − p,M)

a

⌉
≥
⌈
dlower(r,M)− k)

a

⌉
≥

⌈
dac+kd − k

a

⌉
= c .

We can also use our procedure to convert this new constraint into a tightly propagating inequality

J . Similar reasoning can be applied for the upper bound inequalities.

29

We denote, as a shorthand, the result of this whole derivation with J = div-derive(I,D, x,M).

We can now use the derivation above to empower propagation driven by divisibility constraints,

as summarized below.

Propagate-Div

〈M,C〉 =⇒ 〈JM,x ≥I cK, C ∪ {I}〉 if



D ≡ (d | ax+ p) ∈ C,

(x ≥J b) ∈M, val(p,M) = k

d - ab+ k, d | ac+ k, c ≤ upper(x,M)

I = div-derive(J,D, x,M)

〈M,C〉 =⇒ 〈JM,x ≤I cK, C ∪ {I}〉 if



D ≡ (d | ax+ p) ∈ C,

(x ≤J b) ∈M, val(p,M) = k

d - ab+ k, d | ac+ k, c ≥ lower(x,M)

I = div-derive(J,D, x,M)

Note that, as in the case of propagation with inequalities, we do not need to derive the

explanation inequality eagerly, but instead only record the new bound and do the derivation on

demand, if needed for conflict analysis.

Eliminating Conflicting Cores. For sets of constraints containing unbounded variables, there

is no guarantee that the procedure described in the previous section will terminate. In this sec-

tion, we describe an extension based on Cooper’s quantifier elimination procedure that guarantees

termination.

Let U be a subset of the variables in X. We say U is the set of unbounded variables. Let ≺ be

a total order over the variables in X such that for all variables x ∈ X \U and y ∈ U , x ≺ y. We

say a variable x is maximal in a constraint C containing x if for all variables y different from x

in C, y ≺ x. For now, we assume U contains all unbounded variables in the set of constraints C,

and ≺ is fixed. Later, we describe how to dynamically change U and ≺ without compromising

termination.

An interval conflicting core for variable x at state S = 〈M,C〉 is a set {−ax+p ≤ 0, bx−q ≤ 0}

such that p and q are fixed at S, and bound(−ax + p ≤ 0, x,M) > bound(bx − q ≤ 0, x,M). A

divisibility conflicting core for variable x at state S is a set {−ax + p ≤ 0, bx − q ≤ 0, (d |

30

cx + s)} such that p, q and s are fixed, and for all values k in the interval [bound(−ax + p ≤

0, x,M), bound(bx−q ≤ 0, x,M)], the divisibility constraint does not hold i.e. (d - ck+val(s,M)).

We do not consider cores containing more than one divisibility constraint because rule Solve-Div

can be used to eliminate all but one of them. From hereafter, we assume a core is always of the

form {−ax + p ≤ 0, bx − q ≤ 0, (d | cx + r)}, since we can include the redundant divisibility

constraint (1 | x) in any interval conflicting core. We say x is a conflicting variable at state S if

there is an interval or divisibility conflicting core for x. The variable x is the minimal conflicting

variable at S if there is no y ≺ x such that y is also a conflicting variable at S. Let x be a

minimal conflicting variable at state S = 〈M,C〉 and D = {−ax+p ≤ 0, bx−q ≤ 0, (d | cx+r)}

be a conflicting core for x, then a strong resolvent for D is a set R of inequality and divisibility

constraints equivalent to

∃x.− ax+ p ≤ 0 ∧ bx− q ≤ 0 ∧ (d | cx+ r)

The key property of R is that in any state 〈M ′, C ′〉 such that R ⊂ C ′, x is not the minimal

conflicting variable or D is not a conflicting core.

We compute the resolvent R using Cooper’s left quantifier elimination procedure. It can be

summarized by the rule

(d | cx+ s), −ax+ p ≤ 0, bx− q ≤ 0
Cooper-Left

0 ≤ k ≤ m, bp− aq + bk ≤ 0,

a | k + p, ad | ck + cp+ as

where k is a fresh variable and m = lcm(a, ad
gcd(ad,c)) − 1. The fresh variable k is bounded so it

does not need to be included in U . We extend the total order ≺ to k by making k the minimal

variable. For the special case, where (d | cx + s) is (1 | x), we get that m = a − 1 and the rule

above simplifies to

−ax+ p ≤ 0, bx− q ≤ 0

0 ≤ k < a, bp− aq + bk ≤ 0, a | p+ k

Lemma 1.4. The Cooper-Left rule is sound and produces a strong resolvent.

31

Proof. Multiplying the premises with appropriate coefficients we can obtain new, equivalent

constraints that have abc as coefficient with x

(ab)d | (abc)x+ (ab)s , (1.14)

(bc)p ≤ (abc)x , (abc)x ≤ (ac)q . (1.15)

In order for an integer solution to the inequalities above to exist, from the left inequality we can

conclude that there must exist a k ≥ 0 such that (abc)x = (bc)p+ (bc)k, and therefore

a | p+ k .

Additionally, there must be enough room for this solution so, it must be that (ac)q−(bc)p ≥ (bc)k,

i.e

bp− aq + bk ≤ 0 .

Now, substituting (abc)x into the divisibility constraint we get that (ab)d | (bc)k+ (bc)p+ (ab)s,

or equivalently that

ad | ck + cp+ as .

In order to bound k from above, we note that a sufficient (and necessary) condition for a

divisibility constraint a | bx+ c to have a solution, is to have a solution with 0 ≤ x < a
gcd(a,b) . We

use this and deduce that in our case, since we have two divisibility constraints, it must be that

0 ≤ k < lcm

(
a,

ad

gcd(ad, c)

)
.

The rule Cooper-Left is biased to lower bounds. We may also define the Cooper-Right rule

that is based on Cooper’s right quantifier elimination procedure and is biased to upper bounds.

We use cooper(D) to denote a procedure that computes the strong resolvent R for a conflicting

core D. Now, we extend our procedure with a new rule for introducing resolvents for minimal

conflicting variables.

Resolve-Cooper

〈M,C〉 =⇒ 〈M,C ∪ cooper(D)〉 if


x ∈ U,

x is the minimal conflicting variable,

D is a conflicting core for x.

32

Note that in addition to fresh variables, the Resolve-Cooper rule also introduces new con-

straints without resorting to the Learn rule. We will show that this cannot happen indefinitely,

as the rule can only be applied a finite number of times.

Lemma 1.5. For any initial state 〈JK, C〉, the Resolve-Cooper rule can be applied only a finite

number of times, if

• it is never applied to cores containing inequalities introduced by the Learn rule, and;

• the Forget rule is never used to eliminate resolvents introduced by Resolve-Cooper.

Proof. First notice that, although the Cooper-Left and Cooper-Right rules introduce fresh vari-

ables k, these variables are initially bounded, and are therefore never included in the set U . Con-

sequently, these variables are never considered by Resolve-Cooper and, therefore Resolve-Cooper

will only apply to the variables from the initial set of constraints C.

Now, consider a conflicting core

D = {−ax+ p ≤ 0, bx− q ≤ 0, (d | cx+ r)} ,

and a derivation sequence T satisfying the conditions above. In such a derivation sequence, the

Resolve-Cooper rule can only be applied once. This is true because the resolvent R = cooper(D)

is equivalent to ∃x.D. Although the resolvent introduces a fresh variable, it is a finite one and

therefore smaller than all the variables in U . Therefore, for any state where we could try and

apply the strong resolution again, i.e. 〈M ′, C ′〉 such that R ⊆ C ′, x is not the minimal conflicting

variable or D is not a conflicting core. The rule Resolve-Cooper will therefore not be applicable

to the same core, at any state that already contains the resolvent R. Additionally, since we do

not eliminate resolvents introduced by Resolve-Cooper using the Forget rule, a resolvent for a core

D will be generated at most once.

Now, let U be the set of unbounded variables {y1, . . . , ym}, such that ym ≺ . . . ≺ y1. Since

Resolve-Cooper considers these variables in an ordered fashion, all possible resolvents can be

defined by saturation, using the following sequence

S0 = C Si+1 = Si ∪ {R | R is a resolvent for a core D ⊆ Si for variable yi+1}

33

The final set of all possible resolvents will be saturated(C) = Sm+1. Since Resolve-Cooper can be

applied at most once for a core D, and there are a finite number of cores D in each Si, it follows

that the Resolve-Cooper rule can be applied only a finite number of times.

Now we are ready to present and prove a simple and flexible strategy that will guarantee

termination of our procedure even in the unbounded case.

Definition 1.5 (Two-layered strategy). We say a strategy is two-layered for an initial state

〈JK, C0〉 if

1. it is reasonable (i.e., gives preference to the Propagate-Simple rules);

2. the Propagate rules are limited to δ-relevant bound refinements;

3. the Forget rule is never used to eliminate resolvents introduced by Resolvent-Cooper;

4. it only applies the Conflict rule if Resolve-Cooper is not applicable.

Theorem 1.6 (Termination). Given a set of constraints C, there is no infinite derivation se-

quence starting from S0 = 〈JK, C〉 that uses a two-layered strategy when U contains all unbounded

variables in C.

Proof. First we note that, if Conflict rule applies to a non-U -constraint, it must be that Resolve-

Cooper is not applicable. Since the strategy prefers Resolve-Cooper this, in effect, splits the

procedure into two layers, one dealing with bounded variables, and the other one dealing with

the unbounded variables using the strong resolution. And, since the Learn rule will therefore only

be able to learn constraint over bounded variables, we will never apply Resolve-Cooper to cores

involving those constraints.

The strategy also dictates that we don’t remove the strong resolvents introduced by Resolve-

Cooper so we know, by Lemma 1.5, that in any derivation sequence

T = 〈JK, C0〉 =⇒ 〈M1, C1〉 =⇒ · · · =⇒ 〈Mn, Cn〉 =⇒ · · ·

produced by a two-layered strategy, the Resolve-Cooper rule can only be applied a finite number

of times. Consequently, the number of fresh variables introduced in T is bounded.

34

Then, there must be a state Sn = 〈Mn, Cn〉 in T such that the Resolve-Cooper rule is not

applicable to any state that is reachable from Sn. Therefore no additional fresh variable is created

after Sn.

Now, assume that the derivation sequence T is infinite. Then, since the propagation step

is limited to the δ-relevant ones, it must be that, after Sn, the Conflict rule is being applied

infinitely often. Moreover, since Resolve-Cooper does not apply after the state Sn, it must be

that the Conflict rule is applied to only non-U -constraints. But we know, by Theorem 1.3, that

if all variables are bounded, this can not happen.

As an improvement, we note that we do not need to fix the ordering ≺ at the beginning. It

can be modified but, in this case, termination is only guaranteed if we eventually stop modifying

it. Moreover, we can start applying the strategy with U = ∅. Then, for any non-δ-relevant

bound refinement γ(x), produced by the Backjump rules, we add x to the set U . Moreover, a

variable x can be removed from U whenever a lower and upper bound for x can be deduced, and

they do not depend on any decided bounds (variable becomes bounded).

1.5 Experimental Evaluation

We implemented the procedure described in a new solver cutsat. The implementation is a straight-

forward translation of the presented ideas, with very limited propagation, but includes heuristics

from the sat community such as dynamic ordering based on conflict activity, and Luby restarts.

When a variable is to be decided, and we have an option to choose between the upper and lower

bound, we choose the value that could satisfy the most constraints. The solver source code,

binaries used in the experiments, and all the accompanying materials are available at the authors

website2.

In order to evaluate our procedure we took a variety of already available integer problems from

the literature, but we also crafted some additional ones. We included the problems that were used

in [39] to evaluate their new simplex-based procedure that incorporates a new way of generating

cuts to eliminate rational solutions. These problems are generated randomly, with all variables

unbounded. This set of problems, which we denote with dillig, was reported hard for modern smt

2http://cs.nyu.edu/~dejan/cutsat/

35

http://cs.nyu.edu/~dejan/cutsat/

solvers. We also included a reformulation of these problems, so that all the variables are bounded,

by introducing slack variables, which we denote as slack. Next, we included the pure integer

problems from the MIPLIB 2003 library [2], and we denoted this problem set as miplib2003.

The original problems are all very hard optimization instances, but, since we are dealing with

the decision problem only, we have removed the optimization constraints and turned them into

feasibility problems.3 We included pb problems from the 2010 pseudo-Boolean competition that

were submitted and selected in 2010, marked as pb2010, and problems encoding the pigeonhole

principle using cardinality constraints, denoted as pigeons. The pigeonhole problems are known

to have no polynomial Boolean resolution proofs, and will therefore be hard for any resolution

solver that does not use cutting planes. And finally, we included a group of crafted benchmarks

encoding a tight n-dimensional cone around the point whose coordinates are the first n prime

numbers, denoted as primes. In these benchmarks all the variables are bounded from below by 0.

We included the satisfiable versions, and the unsatisfiable versions which exclude points smaller

than the prime solution.

In order to compare to the state-of-the art we compared to three different types of solvers. We

compared to the current best integer smt solvers, i.e yices 1.0.29 [41], z3 2.15 [35], mathsat5 [51]

and mathsat5+cfp that simulates the algorithm from [39]. On all 0-1 problems in our benchmark

suite, we also compared to the sat4j [11] pb solver, one of the top solvers from the pb competition,

and a version sat4j+cp that is based on cutting planes. Finally, we compared with the two top

commercial mip solvers, namely, gurobi 4.0.1 and cplex 12.2, and the open source mip solver

glpk 4.38. The mip solvers have largely been ignored in the theorem-proving community, as it is

claimed that, due to the use of floating point arithmetic, they are not sound.

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with individual

runs limited to 2GB of memory and 600 seconds. The results of our experimental evaluation

are presented in Table 2.1. The rows are associated with the individual solvers, and columns

separate the problem sets. For each problem set we write the number of problems that the solver

managed to solve within 600 seconds, and the cumulative time for the solved problems. We mark

with bold the results that are best in a group of solvers, and we underline the results that are

best among all solvers. For the better understanding of the comparison of cutsat with individual

3All of the problems have a significant Boolean part, and 13 (out of 16) problems are pure pb problems

36

Table 1.1: Experimental results.

problems miplib2003 (16) pb2010 (81) dillig (250) slacks (250) pigeons (19) primes (37)

cutsat 722.78 12 1322.61 46 4012.65 223 2722.19 152 0.15 19 5.08 37

smt solvers time(s) solved time(s) solved time(s) solved time(s) solved time(s) solved time(s) solved

mathsat5+cfp 575.20 11 2295.60 33 2357.18 250 160.67 98 0.23 19 1.26 37

mathsat5 89.49 11 1224.91 38 3053.19 245 3243.77 177 0.30 19 1.03 37

yices 226.23 8 57.12 37 5707.46 159 7125.60 134 0.07 19 0.64 32

z3 532.09 9 168.04 38 885.66 171 589.30 115 0.27 19 11.19 23

pb solvers

sat4j 22.34 10 798.38 67 0.00 0 0.00 0 110.81 8 0.00 0

sat4j+cp 28.56 10 349.15 60 0.00 0 0.00 0 4.85 19 0.00 0

mip solvers

glpk 242.67 12 1866.52 46 4.50 248 0.08 10 0.09 19 0.44 37

cplex 53.86 15 1512.36 58 8.65 250 8.76 248 0.51 19 3.47 37

gurobi 28.96 15 1332.53 58 5.48 250 8.12 248 0.21 19 0.80 37

37

Figure 1.2: Comparison of cutsat with other smt solvers. The plot presents the number of

problems solved against the cumulative time (logarithmic time scale).

smt solvers we present cumulative solving times in Figure 1.2.

Compared to the smt solvers, cutsat performs surprisingly strong, given that it is a prototype

implementation. It outperforms or is the same as other smt solvers, except mathsat5 on all

problem sets. Most importantly, it outperforms even mathsat5 on the real-world miplib2003 and

pb2010 problem sets. The random dillig problems seem to be attainable by the solvers that

implement the procedure from [39], but the same solvers surprisingly fail to solve the same

problems with the slack reformulation (slacks).

Also, very noticeably, the commercial mip solvers outperform all the smt solvers and cutsat

by a big margin.

38

2
Non-Linear Arithmetic

From the early beginnings in Persian and Chinese mathematics [54, 55, 101] until the present day,

polynomial constraints and the algorithmic ways of solving them have been one of the driving

forces in the development of mathematics. Though studied for centuries due to the natural

elegance they provide in modeling the real world, from resolving simple taxation arguments to

modeling planes and hybrid systems, we are still lacking a practical algorithm for solving a system

of polynomial constraints. Throughout the history of mathematics, many brilliant minds have

studied and algorithmically solved many of the related problems, such as root finding [37, 98, 89]

and factorization of polynomials [71, 46, 47]. But, it was not until Alfred Tarski [90, 91, 97] showed

that the theory of real closed fields admits elimination of quantifiers when it became clear that a

general decision procedure for solving polynomial constraints was possible. Although certainly a

wonderful theoretical result of landmark importance, with its non-elementary complexity, Tarski’s

procedure was unfortunately totally impractical.

As one would expect, Tarski’s procedure consequently has been much improved. Most no-

tably, Collins [26] gave the first relatively effective method of quantifier elimination by cylin-

drical algebraic decomposition (CAD). The CAD procedure itself has gone through many revi-

sions [65, 52, 27, 15]. However, even with the improvements and various heuristics, its doubly-

exponential worst-case behavior has remained as a serious impediment. The CAD algorithm

works by decomposing Rk into connected components such that, in each cell, all of the polynomi-

als from the problem are sign-invariant. To be able to perform such a particular decomposition,

CAD first performs a projection of the polynomials from the initial problem. This projection in-

cludes many new polynomials, derived from the initial ones, and these polynomials carry enough

information to ensure that the decomposition is indeed possible. Unfortunately, the size of these

projection sets grows exponentially in the number of variables, causing the projection phase, and

its consequent impact on the search space, to be a key hurdle to CAD scalability.

We propose a new decision procedure for the existential theory of the reals that tries to

alleviate the above problem. As in [58, 67, 60], the new procedure performs a backtracking search

for a model in R, where the backtracking is powered by a novel conflict resolution procedure. Our

39

approach takes advantage of the fact that each conflict encountered during the search is based on

the current assignment and generally involves only a few constraints, a conflicting core. When

in conflict, we project only the polynomials from the conflicting core and explain the conflict

in terms of the current model. This means that we use projection conservatively, only for the

subsets of polynomials that are involved in the conflict, and even then we reduce it further. As

another advantage, the conflict resolution provides the usual benefits of a Conflict-Driven Clause

Learning (CDCL)-style [86, 69] search engine, such as non-chronological backtracking and the

ability to ignore irrelevant parts of the search space. The projection operators we use as part

of the conflict resolution need not be CAD-based and, in fact, one can easily adapt projections

based on other algorithms (e.g [66, 9]).

Due to the volume of algorithms and concepts involved, we concentrate on the details of

the decision procedure and refer the reader to the existing literature for further information

[21, 22, 25, 59, 9]. Acknowledging the importance that the details of a particular implementation

play, we include the description of particular algorithms we chose for our implementation in

Appendix A.

2.1 Preliminaries

As usual, we denote the ring of integers with Z, the field of rational numbers with Q, and the

field of real numbers with R. Additionally, given a vector of variables ~x we denote the set of

polynomials with integer (rational, real) coefficients and variables ~x as Z[~x] (Q[~x], R[~x]). Unless

stated otherwise, we assume all polynomials take integer coefficients, i.e. a polynomial f ∈ Z[~y, x]

is of the form

f(~y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0 ,

where 0 < d1 < · · · < dm, and the coefficients ai are polynomials in Z[~y] with am 6= 0. We call x

the top variable. The highest power dm is the degree of the polynomial f in variable x, and we

denote it with deg(f, x). The set of coefficients of f is denoted as

coeff(f, x) = {am, . . . , a0} .

40

We call am the leading coefficient in variable x, and denote it with lc(f, x). If we exclude the

first k terms of the polynomial f , we obtain the polynomial

Rk(f, x) = am−kx
dm−k + · · ·+ a0 ,

called the k-th reductum of f . We write R∗(f, x) for the set {R0(f, x), . . . ,Rm(f, x)} containing

all reductums.

We denote the set of variables appearing in a polynomial f as vars(f) and call the polynomial

univariate if vars(f) = {x} for some variable x. Otherwise the polynomial is multivariate, or a

constant polynomial (if it contains no variables). Given a set of polynomials A ⊂ Z[x1, . . . xn], we

denote with Ak the subset of polynomials in A that belong to Z[x1, . . . , xk]1, or more precisely

Ak = A ∩ Z[x1, . . . , xk] .

A number α ∈ R is a root of the polynomial f ∈ Z[x] iff f(α) = 0. We call a real number

α ∈ R algebraic iff it is a root of a univariate polynomial f ∈ Z[x], and we denote the field of

all real algebraic numbers by Ralg. We can represent any algebraic number α as (l, u)f , with

l, u ∈ Q, where α is a root of a polynomial f , and the only root in the interval (l, u). We denote

the number of distinct real roots of a univariate polynomial f as rootcount(f).

Example 2.1. Consider the univariate polynomial f1 = 16x3−8x2 +x+16. This polynomial

has only one real root, the irrational number α1 ≈ −0.840661 and we can represent it as

(−0.9,−0.8)f1 .

Given a set of variables X = {x1, . . . , xn}, we call υ a variable assignment if it maps each

variable xk to a real algebraic number υ(xk), the value of xk under υ. We overload υ, as usual,

to obtain the value of a polynomial f ∈ Z[x1, . . . , xn] under υ and write it as υ(f). We say

that a polynomial f vanishes under υ if υ(f) = 0. We can update the assignment υ to map a

variable xk to the value α, and we denote this as υ[xk 7→ α]. Under a variable assignment υ

that interprets the variables ~y, some coefficients of a polynomial f(~y, x) may vanish. If ak is the

1We thus have A0 ⊆ A1 ⊆ · · · ⊆ An, with A0 being the constant polynomials of A, and An = A.

41

first non-vanishing coefficient of f , i.e., υ(ak) 6= 0, we write R(f, x, υ) = akx
dk + · · ·+ a0 for the

reductum of f with respect to υ (the non-vanishing part). Given any sequence of polynomials

~f = (f1, . . . , fs) and a variable assignment υ we define the vanishing signature of ~f as the sequence

v-sig(~f, υ) = (f1, . . . , fk), where k ≤ s is the minimal number such that υ(fk) 6= 0, or s if they

all vanish. For the polynomial f(~y, x) as above, we define the vanishing coefficients signature as

v-coeff(f, x, υ) = v-sig(am, . . . , a0, υ).

Example 2.2. Consider the polynomial f ∈ Z[x, y]

f = 2(x− 1)y3 + (x2 − 1)y2 + 2xy + y .

Under a variable assignment υ with υ(x) = 1 the leading coefficients 2(x − 1) and (x2 − 1)

evaluate to 0 (vanish), and we therefore have that the reductum and the vanishing coefficient

signature of f with respect to υ are

R(f, y, υ) = 2xy + y , v-coeff(f, y, υ) = (2(x− 1), x2 − 1, 2x) .

A basic polynomial constraint F is a constraint of the form f O 0 where f is a polynomial

and O ∈ {<,≤,=, 6=,≥, >}. We denote the polynomial constraint that represents the negation

of a constraint F with ¬F .2 In order to identify the polynomial f of the constraint F , and the

variables of F , we write poly(F) and vars(F), respectively. We normalize all constraints over

constant polynomials to the dedicated constants true and false with the usual semantics. We

write υ(F) to denote the evaluation of F under υ, which is the constraint υ(f)O 0. If f does not

evaluate to a constant under υ, then υ(F) evaluates to a new polynomial constraint F ′, where

poly(F ′) can contain algebraic coefficients.

To be able to denote roots of multivariate polynomials we define the notion of a root object.

Given a variable x, a polynomial in f ∈ Z[~y, x], and a root index k > 0, we denote the root object

as root(f, k, x). The root object denotes the k-th root of f in variable x, but this only makes

sense when the variables ~y have assigned values. Given a variable assignment υ that interprets

2For example ¬(x2 + 1 > 0) ≡ x2 + 1 ≤ 0.

42

the variables ~y, the semantics of the root object are as follows. Let g be the univariate polynomial

obtained from f by substituting the variables ~y by their values in υ. If g has at least k distinct

real roots α1 < · · · < αn, we define υ(root(f, k, x)) = αk. Otherwise, the value of the root object

is undefined. To denote the number of roots k that the polynomial f has under the assignment

υ (that excludes x as above), we write rootcount(f, x, υ).

Borrowing from the extended Tarski language [14, Chapter 7], in addition to the basic con-

straints, we will also be working with extended polynomial constraints that include the above-

defined root objects. An extended polynomial constraint F is of the form

x Or root(f, k, x) , (2.1)

where Or ∈ {<r,≤r,=r, 6=r,≥r, >r}. In order to allow extraction of the polynomial f from

the constraint, we define poly(F) = f . The semantics of the predicate (2.1) under a variable

assignment υ is the following. If the value of the root object under υ is defined, then the value

of the constraint is as expected. Otherwise, the constraint evaluates to false. Naturally, if F is

an extended polynomial constraint, so is the negation ¬F .3

Example 2.3. Take the bivariate polynomial f = 2yx3 − 8x2 + x + 3y − 8 and the variable

assignment υ1 = [x 7→ −1, y 7→ 8]. If we substitute the value of y into the polynomial f , we

obtain the univariate polynomial g = 16x3 − 8x2 + x+ 16 which, as we saw in Example 2.1,

has only one root α = (−0.9,−0.8)g. Under υ1, the value of root(f, 1, x) evaluates to α, but

the value of root(f, 2, x) is undefined as g only has one root. Now consider the constraints

x <r root(f, 1, x), x ≥r root(f, 1, x), ¬(x <r root(f, 1, x)), ¬(x <r root(f, 2, x)).

By definition the values of the constraints under υ1 are true, false, false, true, correspondingly.

The fourth constraint evaluates to true as the root object is undefined.

Now consider the assignment υ2 = [x 7→ −1, y 7→ 0]. Under this assignment, substitution

of the value of y into f gives the polynomial g = −8x2 +x− 8, which now does not have any

real roots. The values of the above constraints under the assignment υ2 are therefore false,

3Note that, for example, ¬(x <r root(f, k, x)) is not necessarily equivalent to x ≥r root(f, k, x).

43

false, true, true. Note that the second and third constraint might be mistaken to be equal,

but are not – as can be seen, they have different semantics.

A polynomial constraint is either a basic or an extended one. Given a set of polynomial

constraints F , we say that the variable assignment υ satisfies F if it satisfies each constraint in

F . If there is such a variable assignment, we say that F is satisfiable, otherwise it is unsatisfiable.

A clause of polynomial constraints is a disjunction C = F1 ∨ . . . ∨ Fn of polynomial constraints.

We use literals(C) to denote the set {F1,¬F1, . . . , Fn,¬Fn}. We say that the clause C is satisfied

under the assignment υ if some polynomial constraint Fj ∈ C evaluates to true under υ. Finally,

a polynomial constraint problem is a set of clauses C, and it is satisfiable if there is a variable

assignment υ that satisfies all the clauses in C. If the clauses of C contain the variables x1, . . . , xn

then, for k ≤ n, we denote with Ck the subset of the clauses that only contain variables x1, . . . , xk.

2.2 An Abstract Decision Procedure

We describe our procedure as an abstract transition system in the spirit of Abstract DPLL [72, 62].

The crucial difference between the system we present is that we depart from viewing the Boolean

search engine and the theory reasoning as two separate entities that communicate only through

existing literals. Instead, we allow the model that the theory is trying to construct to be involved

in the search and in explaining the conflicts, while allowing new literals to be introduced so as

to support more complex conflict analyses. Additionally, our presentation makes the concept of

relevancy inherent to the procedure (e.g. [33]). The transition system presented here applies to

non-linear arithmetic, but it can in general be applied to other theories.

The states in the transition system are indexed pairs of the form 〈M, C〉n, where M is a

sequence (usually called a trail) of trail elements, and C is a set of clauses. The index n denotes

the current stage of the state. Trail elements can be decided literals, propagated literals, or a

variable assignment. A decided literal is a polynomial constraint F that we assume to be true.

On the other hand, a propagated literal, denoted as E→F , marks a polynomial constraint F ∈ E

that is implied to be true in the current state by the clause E (the explanation). In both cases,

44

we say that the constraint F appears in M , and write this as F ∈ M . We denote the set of

polynomial constraints appearing in M with constraints(M). We say M is non-redundant if no

polynomial constraint appears in M more than once. A trail variable assignment, written as

x 7→α, is an assignment of a single variable to a value α ∈ Ralg. Given a trail M , containing

variable assignments xi1 7→α1, . . . , xik 7→αk, in order, we can construct an assignment

υ[M] = υ0[xi1 7→ α1] . . . [xik 7→ αk] ,

where υ0 is an empty assignment that does not assign any variables.

We say that the sequence M is stage increasing when the sequence is of the form

M = JN1, x1 7→α1, . . . , xk−1 7→αk−1, Nk, xk 7→αk, . . . , xn−1 7→αn−1, NnK ,

where, for each k ≤ n, the sequence Nk does not contain any variable assignments, each constraint

F ∈ constraints(Nk) contains the variable xk, and (optionally) the variables x1, . . . , xk−1. In such

a sequence M , we denote with stage(M) = n the stage of the sequence. If F = constraints(M),

we say that M is feasible, when the set of univariate polynomial constraints υ[M](F) has a

solution. We write feasible(M) to denote the feasible set of υ[M](F). Given an additional

polynomial constraint F ∈ Z[x1, . . . , xn], we say that F is compatible with the sequence M ,

when feasible(JM,F K) 6= ∅ and denote this with a predicate compatible(F,M). In our actual

implementation, we represent feasible sets using a set of intervals with real algebraic endpoints.

The predicate compatible(F,M) is implemented using real root isolation and sign evaluation

procedures. In the Appendix, we sketch the algorithms used to implement these procedures, and

provide references to the relevant literature.

Our transition system will work over states that are well-formed. Intuitively, in such a state,

we commit to the variable assignment, but make sure that the current stage is consistent on the

Boolean level. With this in mind, given a polynomial constraint F with vars(F) ⊆ {x1, . . . , xn},

45

and a state M with stage(M) = n, we define the state value of F in M as

value(F,M) =



υ[M](F) xn 6∈ vars(F) ,

true F ∈ constraints(M) ,

false ¬F ∈ constraints(M) ,

undef otherwise.

Naturally, we overload value to also evaluate clauses of polynomial constraints, and sets of

clauses, i.e. for a clause C we define value(C,M) to be true, if any of the literals evaluates to

true, false if all literals evaluate to false, and undef otherwise.

Definition 2.1 (Well-Formed State). We say a state 〈M, C〉n is well-formed when M is non-

redundant, stage increasing with stage(M) = n, and all of the following hold.

1. Clauses up to stage n are satisfied, i.e. we have that value(Cn−1,M) = true.

2. The state is consistent, i.e. feasible(M) 6= ∅ and for each F ∈ constraints(M) we have that

that value(F,M) = true.

3. Propagated literals E→F are implied, i.e. F ∈ E and for all other literals F ′ 6= F in E,

value(F ′,M) = false.

We are now ready to define the transition system. We separate the transition rules into three

groups: the search rules, the clause processing rules, and the conflict analysis rules. The search

rules are the main driver of the procedure, with the responsibility for selecting clauses to process,

creating the variable assignment while lifting the stages, and detecting Boolean conflicts. The

search rules operate on well-formed states 〈M, C〉n. If the search rules select a clause C to process,

we switch to a state 〈M, C〉n � C, where we can apply the set of clause processing rules. The

notation � C designates that we are performing semantic reasoning in order to assign a value to

a literal of C. If the search rules detect that in the current state some clause C ∈ C is falsified,

we switch to a state 〈M, C〉n ` C, where we can apply the conflict analysis rules. The notation

` C denotes that we are trying to produce a proof of why C is inconsistent in the current state.

Finally, given a polynomial constraint problem C, with vars(C) = {x1, . . . , xn}, the overall

goal of the procedure is, starting from an initial state 〈JK, C〉1, and applying the rules, either to

46

end up either in a state 〈υ, sat〉, indicating that the initial set of clauses C is satisfiable where the

assignment υ is the witness, or to derive unsat, which indicates that the set C unsatisfiable.

Search Rules. Fig 2.1 presents the set of search rules. The Select-Clause rule selects one

of the clauses of the current stage, whose state value is still undetermined, and transitions into

the clause processing mode that will hopefully satisfy the clause. The Conflict rule detects

if there is a clause of the current stage that is inconsistent in the current state, and transitions

into the conflict resolution mode that will explain the conflict and backtrack appropriately. On

the other hand, if all the clauses of the current stage are satisfied, we can either transition to

the next stage, using the Lift-Stage rule, or conclude that our problem is satisfiable, using the

Sat rule. Since at this point the current stage is consistent, in addition to formally introducing

the new stage, the Lift-Stage rule selects a particular value for the current variable from the

feasible set of the current stage. Note that once we move to the next stage, all the clauses of

previous stages have values in the state, and can never be selected by the Select-Clause or

the Conflict rules. We conclude this set of rules with the Forget rule that can be used to

eliminate any learnt clause (a clause added while analyzing conflicts) from the current set of

clauses.

Clause Processing Rules. In this set of rules, presented in Fig 2.2, we are trying to assign

a currently unassigned literal of the given clause C, hoping to satisfy the clause. When one of

the clause processing rules is applied, we immediately switch back to the search rules. As usual

in a CDCL-style procedure, the simplest way to satisfy the clause C is to perform the Boolean

unit propagation, if applicable, by using the B-Propagate rule. We restrict the application of

this rule so that adding the constraint to the state keeps it consistent, i.e., it is compatible with

the current set of constraints. If this is the case, we add the constraint to the state together

with the explanation (clause C itself). To allow more complex propagations, the ones that

are valid in R modulo the current state, we provide the R-Propagate rule. This rule can

propagate a constraint from the clause, if assuming the negation would be incompatible with the

current state. The R-Propagate rule is equipped with an explanation function explain. The

explain function, given a polynomial constraint F , and the trail M , returns the explanation clause

47

Select-Clause

〈M, C〉k −→ 〈M, C〉k � C if
C ∈ Ck

value(C,M) = undef

Conflict

〈M, C〉k −→ 〈M, C〉k ` C if
C ∈ Ck

value(C,M) = false

Sat

〈M, C〉k −→ 〈υ[M], sat〉 if xk 6∈ vars(C)

Lift-Stage

〈M, C〉k −→ 〈JM,xk 7→ αK, C〉k+1 if

xk ∈ vars(C)

α ∈ feasible(M)

value(Ck,M) = true

Forget

〈M, C〉k −→ 〈M, C \ {C}〉k if
C ∈ C

C is a learnt clause

Figure 2.1: The search rules.

E = explain(F,M) that is valid in R, and implies the constraint F under the current assignment

i.e., F ∈ E, and all literals in E but F are false in the state. The clause E may contain new

literals that do not occur in C, as long as they evaluate to false in the state. To simplify the

presentation, in the R-Propagate rule, the explanation clause E is eagerly generated, but in

our actual implementation, we compute them only if they are needed during conflict resolution.

Finally, if we cannot deduce the value of an unassigned literal, we can assume a value for such a

literal using the Decide-Literal rule.

Conflict analysis rules. The conflict analysis rules start from an initial proper state 〈M, C〉n `

C, where C ∈ C is the conflicting clause. The conflict analysis is a standard Boolean conflict

analysis [86] with a model-based twist. As the rules move the state backwards, the goal is to

construct a new resolvent clause R, that will explain the conflict and ensure progress in the

48

Decide-Literal

〈M, C〉k � C −→ 〈JM,F1K, C〉k if

F1, F2 ∈ C

∀i : value(Fi,M) = undef

compatible(F1,M)

B-Propagate

〈M, C〉k � C −→ 〈JM,C→F K, C〉k if

C = F1 ∨ . . . ∨ Fm ∨ F

value(F,M) = undef

∀i : value(Fi,M) = false

compatible(F,M)

R-Propagate

〈M, C〉k � C −→ 〈JM,E→F K, C〉k if

F ∈ literals(C)

value(F,M) = undef

¬ compatible(¬F,M)

E = explain(F,M)

Figure 2.2: The clause satisfaction rules.

search. This means that, when we backtrack the sequence M just enough, the addition of R

will ensure progress in the search by eliminating the inconsistent part from the state, and thus

forcing the search rules to change some of the choices made. On the other hand, if the conflict

analysis backtracks the state all the way into an empty state, this will be a signal that the original

problem is unsatisfiable. Once the conflict analysis backtracks enough and deduces the resolvent

R, then we pass it to the clause processing immediately.4

Example 2.4. First, for the sake of this example, let us restrict ourselves to the case of linear

constraints. When solving a set of linear constraints C, one can use the Fourier-Motzkin

elimination rule to define the explain function. As shown in [67, 60], this will give a finite

basis B with respect to C that is obtained by closing C under the application of the Fourier-

4This is crucial in order to ensure termination.

49

Resolve-Propagation

〈JM,E→F K, C〉k ` C −→ 〈M, C〉k ` R if
¬F ∈ C

R = resolve(C,E, F)

. resolve returns the standard Boolean resolvent

Resolve-Decision

〈JM,F K, C〉k ` C −→ 〈M, C ∪ {C}〉k � C if ¬F ∈ C

Consume

〈JM,F K, C〉k ` C −→ 〈M, C〉k ` C if ¬F 6∈ C

〈JM,E→F K, C〉k ` C −→ 〈M, C〉k ` C if ¬F 6∈ C

Drop-Stage

〈JM,xk+1 7→αK, C〉k+1 ` C −→ 〈M, C〉k ` C if value(C,M) = false

〈JM,xk+1 7→αK, C〉k+1 ` C −→ 〈M, C ∪ {C}〉k � C if value(C,M) = undef

Unsat

〈JK, C〉1 ` C −→ unsat

Figure 2.3: The conflict analysis rules.

50

Motzkin elimination step. It is fairly easy to show that the closure is a finite set, since we

always produce constraints with one fewer variable.

We explain the search rules by applying them to the following set of linear polynomial

constraints

C = { (x+ 1 ≤ 0 ∨ x− 1 ≥ 0︸ ︷︷ ︸
C1

), x+ y > 0︸ ︷︷ ︸
C2

, x− y > 0︸ ︷︷ ︸
C3

} .

During the search, we associate x with level 1, and y with level 2. Therefore the constraints

of level 1 are C1 = {C1}, and the constraints of level 2 are C2 = {C2, C3}. The following is a

derivation of the transition system, starting from the initial state 〈JK, C〉, applying the rules

until we encounter a conflict.

〈JK, C〉1

↓ Select-Clause (x+ 1 ≤ 0) ∨ (x− 1 ≥ 0), Decide-Literal (x+ 1 ≤ 0)

〈J(x+ 1 ≤ 0)K, C〉1

↓ Lift-Stage

〈J(x+ 1 ≤ 0), x 7→−1K, C〉2

↓ Select-Clause (x+ y > 0), B-Propagate (x+ y > 0)

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0)K, C〉2

Select-Clause (x− y > 0)

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0)K︸ ︷︷ ︸
M1

, C〉2 � (x− y > 0)

The derivation above starts by selecting C1, as the only clause of the first stage, for

processing and decides the literal x + 1 ≤ 0 of C1 to true. Then, since there are no more

clauses in the first stage, it proceeds to select the value of −1 for x and we go to the next

stage. At the stage of y, we start with propagating x+ y > 0 to be true by unit propagation

on C2. We continue by selecting the clause x − y > 0 for processing. But now, under the

assignment υ[M1] which maps x to −1, the constraints x + y > 0 and x − y > 0 evaluate

to y − 1 > 0 and −y − 1 > 0, respectively, which taken together are inconsistent, i.e. we

51

can not take (x − y > 0) as it is incompatible with the current state. We therefore use the

R-Propagate rule to propagate ¬(x− y > 0) ≡ x− y ≤ 0.

In order to explain the propagation of x − y ≤ 0, we use a Fourier-Motzkin elimination

step to obtain

E1 ≡ (x+ y > 0) ∧ (x− y > 0) =⇒ (x > 0)

≡ (x+ y ≤ 0) ∨ (x− y ≤ 0) ∨ (x > 0) .

For this to be a proper explanation, all literals, except for the implied one, should evaluate

to false, which is indeed the case

value(x+ y ≤ 0,M1) = false , value(x > 0,M1) = false .

Therefore E1 is a proper explanation and we can use it to propagate x− y ≤ 0. In contrast,

an smt solver in this situation would learn a weaker explanation

E′1 ≡ (x+ y > 0) ∧ (x− y > 0) =⇒ (x+ 1 > 0) .

This is due to the fact that they use only existing literals for producing explanations.

As soon as we propagate x− y ≤ 0, we enter a conflict with the clause C3 ≡ (x− y > 0)

and therefore enter the conflict analysis mode.

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0)K, C〉2 � (x− y > 0)

↓ R-Propagate (x− 1 ≤ 0) with E1 ≡ (x+ y ≤ 0) ∨ (x− y ≤ 0) ∨ (x > 0)

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0), E1→(x− y ≤ 0)K, C〉2

↓ Conflict

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0), E1→(x− y ≤ 0)K, C〉2 ` (x− y > 0)

We now apply the conflict analysis rules to backtrack to the point where we can try

some other option, and learn a clause from the conflict that will ensure we don’t enter this

particular conflict again. Below is the continuation of the derivation that uses the conflict

analysis rules.

52

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0), E1→(x− y ≤ 0)K, C〉2 ` (x− y > 0)yResolve-Propagation

resolve(x− y > 0, E1, (x− y ≤ 0)) = (x+ y ≤ 0) ∨ (x > 0)

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0)K, C〉2 ` (x+ y ≤ 0) ∨ (x > 0)yResolve-Propagation

resolve((x+ y ≤ 0) ∨ (x > 0), (x+ y > 0), (x+ y > 0)) = (x > 0)

〈J(x+ 1 ≤ 0), x 7→−1K, C〉2 ` (x > 0)

↓ Drop-Stage

〈J(x+ 1 ≤ 0)K︸ ︷︷ ︸
M2

, C ∪ {x > 0}〉1 � (x > 0)

We exit the conflict analysis by learning x > 0 and immediately proceed to the processing

rules. Again, we can not choose x > 0 to be true, since it is incompatible with the current

state M2 which contains x+ 1 ≤ 0. We therefore apply the R-Propagate rule to propagate

x ≤ 0 and use Fourier-Motzkin elimination again to obtain the explanation

E2 ≡(x+ 1 ≤ 0) ∧ (x > 0) =⇒ (0 > 1)

≡(x+ 1 > 0) ∨ (x ≤ 0) .

This is a proper explanation since the literal (x + 1 > 0) evaluates to false in the current

state M2. And, again, as soon as we propagate x ≤ 0 we enter the conflict analysis rules due

to a conflict with the learned clause (x > 0). The resolution of the conflict then proceeds as

follows.

53

〈J(x+ 1 ≤ 0)K, C ∪ {x > 0}〉1 � (x > 0)

↓ R-Propagate (x ≤ 0) with E2 ≡ (x+ 1 > 0) ∨ (x ≤ 0)

〈J(x+ 1 ≤ 0), E2→(x ≤ 0)K, C ∪ {x > 0}〉1

↓ Conflict

〈J(x+ 1 ≤ 0), E2→(x ≤ 0)K, C ∪ {x > 0}〉1 ` (x > 0)yResolve-Propagation

resolve((x > 0), E2, (x ≤ 0)) = (x+ 1 > 0)

〈J(x+ 1 ≤ 0)K, C ∪ {x > 0}〉1 ` (x+ 1 > 0)

↓ Resolve-Decision (x+ 1 ≤ 0)

〈JK, C ∪ {x > 0, x+ 1 > 0}〉1 � (x+ 1 > 0)

↓ B-Propagate (x+ 1 > 0)

〈J(x+ 1 > 0)→(x+ 1 > 0)K, C ∪ {x > 0, x+ 1 > 0}〉1

After the conflict analysis is done, we have learned not only that our first choice of (x+1 ≤

0) was bad, but we also have a stronger learned clause x > 0. With this new information

the procedure proceeds directly, without further conflicts, to construct a satisfying model of

the original formula.

2.2.1 Termination

Our decision procedure consists of all three sets of rules described above. Any derivation will pro-

ceed by switching amongst the three distinct modes. Proving termination in the basic CDCL(T)

framework is usually a fairly straightforward task, as the new explanation and conflict clauses

always contain only literals from the finite set of literals in the initial set of constraints. In our

case, the main conundrum in proving termination is that we allow the explanations to contain

fresh constraints, which, if we are not careful, could lead to non-termination. We therefore re-

54

quire the set of new constraints to be finite. We call an explanation function explain a finite basis

explanation function with respect to a set of constraints C, when there is a finite set of polynomial

constraints B such that for any derivation of the proof rules, the clauses returned by applications

of explain always contain only constraints from the basis B. Having such an explanation function

will therefore provide us with a termination argument, and we will provide one such explanation

function for the theory of reals in the next section.

Theorem 2.2. Given a set of polynomial constraints C, and assuming a finite basis explanation

function explain, any derivation starting from the initial state 〈JK, C〉1 will terminate either in a

state 〈υ, sat〉, where the assignment υ satisfies the constraints C, or in the unsat state. In the

latter case, the set of constraints C is unsatisfiable in R.

Proof. Assume we have a set of polynomial constraints C0, over the variables x1, . . . , xn, and a

finite-basis explanation function explain. Starting from the initial state 〈JK, C0〉1, we claim that

any derivation of the transition system (finite or infinite), satisfies the following properties

1. the derivation consists of only well-formed states;

2. the only possible “sink states” are the sat and the unsat states;

3. all ` C clauses are implied by the initial constraints C0;

4. during conflict analysis the ` C clause evaluates to false;

Assuming termination, and the above properties, the statement can be proven easily. Since

sat and unsat are the only sink states, the derivation will terminate in one of these states. Since

the Lift-Stage rule considers the variables x1, . . . , xn in order, we can only enter the satisfiable

state if it is of the form 〈υ, sat〉n+1. Consequently, by the precondition of the Lift-Stage rule,

and the fact that we never remove the original constraints from C0, all the constraints in C0 are

satisfied by υ. Therefore if we terminate in a sat state, the original problem is indeed satisfiable.

On the other hand, if we terminate in the unsat state, by the above properties, the conflicting

clause is implied by C0 and evaluates to false in the state 〈JK, C〉1. But, since there are no

assertions in the trail, and variable assignment υ(JK) does not assign any variables, it must be

that the constraint is trivially false. Given that false is implied by the original constraints, the

initial constraints themselves must truly be unsatisfiable.

55

The first two properties in the list above are a fairly easy exercise in case analysis and induc-

tion, so we skip those and concentrate on the more interesting properties. Proving the properties

of conflict analysis is also quite straightforward, via induction on the number of conflicts, and

conflict analysis steps. Clearly, initially, we have that C evaluates to false (the precondition of

the Conflict rule), and is implied by C by induction. Then, every new clause that we produce

during conflict resolution is obtained by the Boolean resolve rule, which will produce a valid

deduction. Additionally, since the clause we are resolving with is a proper explanation, it will

have all literals except the one we are resolving evaluate to false. Therefore, the resolvent also

evaluates to false. As we backtrack down the trail with the conflicting clause, by definition of

value and the preconditions of the rules, the clause still remains false.

Now, let us prove that the system terminates. It is clear that both the clause processing rules

(one step transitions) and the conflict analysis rules (always removing elements from the trail)

always terminate in a finite number of steps, and return to the search rules (or the unsat state).

For the sake of the argument, let us assume that there is a derivation that does not terminate,

and therefore does not enter the unsat state. We can define a big-step transition relation −→bs

that covers a transition from a search state, applying one or more transitions in the processing

or analysis rules, and returns to a search state.

By assumption, we have a finite-basis explanation function explain, so we can assume a set of

polynomial constraint literals B from which all the clauses that we can see during the search are

constructed. In order to keep progress of the search, we first define a function search-level that,

given the trail M , returns a pair (k, l), where k is the index of the next variable we are trying to

assign, i.e. k is one more than the number of variable assignments in M , and l is the number of

decided literals (applications of the Decide-Literal rule) in M . Note that the search-level of

any state that we can encounter is always a pair (k, l) with 1 ≤ k ≤ n and l ≤ |B|. Given such

a pair (k, l) we define the function subseq(M,k, l) to be the largest prefix of M that contains

at most k variable assignments and at most l decided literals, i.e. the largest prefix of M with

search-level(M) ≤ (k, l) (using the lexicographic order).

To define the measure of a state, we first define a series of weight functions ωk that, given a

56

sequence M , returns

ωk,l(M) =


|{ F ∈ Bk+1 | value(F, subseq(M,k, l)) = undef }| (k, l) ≤ search-level(M),

∞ otherwise.

In other words, if we are trying to assign the variable xk, where we already performed a number

of literal decisions, this state is as heavy as the number of literals left in the basis containing only

variables x1, . . . , xk that could still possibly be assigned.

In order to prove termination, we will track the progress of all levels simultaneously. We define

the function Ω to map the sequence M of a well-formed state 〈M, C〉k into a n(|B|+ 1) + 2-tuple

as

Ω(M) = 〈 ω1,0(M), ω1,1(M), . . . , ω1,|B|(M),

ω2,0(M), ω2,1(M), . . . , ω2,|B|(M),

...

ωn,0(M), ωn,1(M) . . . , ωn,|B|(M),

ωn+1,0(M), |C| 〉 .

Given two well-formed states with trails M1 and M2, we write M1lM2 if Ω(M1) <lex Ω(M2),

where <lex is the natural lexicographical extension of the order < on N ∪ {∞}. Now consider

a transition of the search 〈M1, C1〉k1 −→bs〈M2, C2〉k2 , with search-level(M1) = (k1, l1), and the

following cases.

• If this transition was initiated by the Select-Clause rule, either a new literal was assigned

at the current literal decision level by propagation, or a new decision was introduced. In

both cases M2 lM1 as either the element (ωk1,l1) of the sequence decreased by 2 (literal

and its negation were assigned), or the next element of the sequence decreased from ∞ to

a finite value (ωk1,l1+1).

• If this transition was initiated by the Lift-Stage rule, the element ωk1+1,0 in Ω(M)

decreased from ∞ to a finite value, so M2 lM1 again.

• If we went into conflict analysis mode via the Conflict rule, we will backtrack to the

search level (k2, l2), learn a new clause, and then assign at least one new literal of the

57

learned clause. We do so since from conflict analysis we always transition into the clause

processing rules. We exit conflict resolution either using the Drop-Stage rule, or the

Resolve-Decision rule. If we used the Resolve-Decision rule, we will assign the single

undefined literal of the learned clause using one of the propagation rules, thus decreasing

ωk2,l2 . If we used the Drop-Stage rule, we know that ωk2,l2+1(M1) = ∞, and that the

learnt clause has at least one undefined literal that we can assign a value. In this case

we decrease the measure as in the case of Select-Clause. In both cases we have that

M2 lM1.

• If we applied the Forget rule, it is clear that only last element of the measure decreases,

and hence also M2 lM1.

Since, we covered all cases, the function Ω is always decreasing, and termination of the system

follows.

2.3 Producing Explanations

Given a polynomial constraint F with poly(F) ∈ Z[~y, x], and a trail M such that ¬F is not

compatible with M , the procedure explain(F,M) returns an explanation clause E that implies F

in the current state. This clause is of the form E ∧ F =⇒ F , where E and F are sets of literals

with poly(E) ⊂ Z[~y] and poly(F) ⊂ Z[~y, x]. All literals in F occur in M , and all literals in E

evaluate to true in the current assignment. Note that E may contain new literals, so we must

ensure that the new literals in poly(E) are a subset of some finite basis. In principle, for any

theory that admits elimination of quantifiers, it is possible to construct an explanation function

explain. In this section, we describe how to produce an explain procedure for theory of the reals

based on cylindrical algebraic decomposition (CAD). Before that, we first make a short interlude

into the world of CAD.

2.3.1 Cylindrical Algebraic Decomposition

A crucial role in the theory of CADs and in the construction of our explain procedure is the

property of delineability. Let us first give some intuition on what delineability means and how

58

H Θ 0 , Θ 1L

H Θ 1 , Θ 2 L

H Θ 2 , Θ 3 L

Θ 1

Θ 2

-1.0
- 0.5

0.0
0.5

1.0

-1.0

- 0.5

0.0

0.5

1.0

- 2

-1

0

1

2

Figure 2.4: Diagram for Example 2.5 depicting a delineable region.

we might take advantage of it, by means of an example.

Example 2.5. Let us consider two polynomials f1 and f2 in Z[x, y, z]

f1 = 30z + 10x2 − 3y2 + 15 , f2 = 6z − 2x− 3y2 − 3 ,

and consider the region S = { (x, y) | x2 + y2 < 1 } and the cylinder Z = S × R =

{ (x, y, z) | x2 + y2 < 1 } over S.

To analyze f1 and f2 and how their signs change in the cylinder Z, we can solve the

equations f1 = 0 and f2 = 0 for z, obtaining functions θ1 and θ2 that describe the zeroes of

f1 and f2

z = θ1(x, y) = −1

3
x2 +

1

10
y2 − 1

2
, z = θ2(x, y) =

1

3
x+

1

2
y2 +

1

2
.

59

The cylinder Z and the functions θ1 and θ2 are depicted in Figure 2.4. As can be seen

from the figure, the roots of f1 and f2 are separated, and so in each of the marked regions

(θ0 − θ1), θ1, (θ1 − θ2), θ2, and (θ2 − θ3) the signs of the polynomials f1 and f2 will be

invariant. Moreover, for any point α ∈ S, if we move z from −∞ to +∞, the polynomials

f1 and f2 will always produce the same sequence of signs.

(θ0, θ1) θ1 (θ1, θ2) θ2 (θ2 − θ3)

sgn(f1(α, z)) -1 0 1 1 1

sgn(f2(α, z)) -1 -1 -1 0 1

Now, imagine that we are solving constraints f1 < 0 and f2 > 0, therefore requiring the

sign combination to be (−1,+1). If we try to find the required combination of signs at some

particular point in α ∈ S, we will fail. But now, due to the polynomials behaving as above,

i.e. with roots cleanly separated across the cylinder Z, we can safely conclude that we can

not find the solution anywhere in S. In particular, we can explain the conflict that the choice

of α introduced by the constraint x2 + y2 ≥ 1 that describes the points not in S.

Following the terminology used in CAD, we say that a connected subset of Rk is a region.

Given a region S, the cylinder Z over S is S × R. A θ-section of Z is a set of points 〈~α, θ(~α)〉,

where ~α is in S and θ is a continuous function from S to R. A (θ1, θ2)-sector of Z is the set of

points 〈~α, β〉, where ~α is in S and θ1(~α) < β < θ2(~α) for continuous functions θ1 < θ2 from S to

R. Sections and sectors are also regions. Given a subset of S of Rk, a decomposition of S is a

finite collection of disjoint regions S1, . . . , Sn such that S1 ∪ . . .∪ Sn = S. Given a region S, and

a set of continuous functions θ1 < . . . < θn from S to R, we can decompose the cylinder S × R

into the following regions:

• the θi-sections, for 1 ≤ i ≤ n, and

• the (θi, θi+1)-sectors, for 0 ≤ i ≤ n,

where, with slight abuse of notation, we define θ0 as the constant function that returns −∞ and

θn+1 the constant function that returns ∞.

60

A set of polynomials {f1, . . . fs} ⊂ Z[~y, x], with ~y = (y1, . . . , yn), is said to be delineable in a

region S ⊆ Rn if for every fi (and fj) from the set, the following properties are invariant for any

α ∈ S:

1. the total number of complex roots of fi(α, x);

2. the number of distinct complex roots of fi(α, x);

3. the number of common complex roots of fi(α, x) and fj(α, x).

Delineability, as described above, is particularly useful because all three properties of the

definition have an algebraic characterization in terms of polynomial operations. For our purpose

it is the consequence of delineability on the arrangement of real roots that matters the most. As

explained by the following theorem, if a set of polynomials A is delineable on a region S, then the

number of real roots of the polynomials does not change on S. Moreover, these roots maintain

their relative order on the whole of S. This will imply that any set of polynomial constraints

over polynomials in A will have invariant truth values over the region S.

Theorem 2.3 (Corollary 8.6.5 of [68]). Let A be a set of polynomials in Z[~y, x], delineable

in a region S ⊂ Rn. Then, the real roots of A vary continuously over S, while maintaining their

order.

Example 2.6. Consider the polynomial f = x2 + y2 + z2 − 1, with zeros of f depicted in

Fig 2.5 together with two squiggly regions of R2. In the region S1 that does not intersect

the sphere, polynomial f is delineable, as the number of real roots of f(α, x) is 2 for any α

in S1. In the region S2 that intersects the sphere, f is not delineable, as the number of real

roots of f may be from 0 (α’s outside the unit circle), 1 (on the circle), or 2 (inside the unit

circle).

In order to reason about a set of polynomials A, we will decompose the real space into regions

where these polynomials are delineable. We can identify these regions by referring to the roots of a

61

-1

0

1

-1

0

1

-1.0

- 0.5

0.0

0.5

1.0

Figure 2.5: The sphere corresponding to the roots of x2 + y2 + z2 − 1, and regions of Ex 2.6 and

Ex 2.8.

.

related set of polynomials that are derived from the set A by using a projection operator. We will

call a projection operator any map P that, given a variable x and set of polynomials A ⊂ Z[~y, x],

transforms A into a set of polynomials P(A, x) ⊂ Z[~y]. We call P(A, x) the projection of A

under P with respect to variable x. In his seminal paper [26], Collins introduced a projection

operator which we denote with Pc. In order to define the operator Pc, we first need to define

some “advanced” operations on polynomials, and we refer the reader to [64, 9, 17] for a more

detailed exposition.

Let f, g ∈ Z[~y, x] be two polynomials with n = min(deg(f, x), deg(g, x)). For k = 0, . . . , n−1,

we denote with Sk(f, g, x) the k-th subresultant of f and g. The k-th subresultant is defined as

the determinant of the k-th Sylvester-Habicht matrix of f and g, and is a polynomial of degree

≤ k in x with coefficients in Z[~y]. The matrix in question is a particular matrix containing as

62

elements the coefficients of f and g. Additionally, we denote with psck(f, g, x) the k-th principal

subresultant coefficient of f and g, which is the coefficient of xk in the polynomial Sk(f, g, x),

and define pscn(f, g, x) = 1. We denote the sequence of principal subresultant coefficients as

psc(f, g, x) = (psc0(f, g, x), . . . , pscn(f, g, x)).

We can ensure delineability of a set of polynomials A, as defined above, if we can define a

region where we can control the behavior of complex roots of the polynomials in A. Since the

number of common complex roots of two polynomials corresponds to the degree of their gcd,

the following theorem provides us with an algebraic means to describe this number using the

operations we introduced above.

Theorem 2.4 (Theorem 2 in [26]). Let f, g ∈ Z[~y, x] be non-zero polynomials. Then the de-

gree deg(gcd(f, g), x) = k if and only if k is the least j such that pscj(f, g) 6= 0.

We now present the projection operator that Collins introduced [26], that can be used to

capture the regions of delineability.

Definition 2.5 (Collins Projection). Given a set of polynomials A = {f1, . . . , fm} ⊂ Z[~y, x]

the Collins projector operator Pc(A, x) is defined as

⋃
f∈A

coeff(f, x) ∪
⋃
f∈A

g∈R∗(f,x)

psc(g, g′x, x) ∪
⋃
i<j

gi∈R∗(fi,x)
gj∈R∗(fj,x)

psc(gi, gj , x) ,

In order to denote the individual parts of the projection, in order, we designate them as P1
c(A, x),

P2
c(A, x) and P3

c(A, x).

It can be shown that, given a set of polynomials A, the Collins projection operator Pc produces

a new set (the projection) of polynomials that can be used to describe the regions where A is

delineable. This description of delineability relies only on the sign-invariance of the projection

polynomials, where by sign-invariance we mean the following. Let A = {f1, . . . , fm} ⊂ Z[~y] be

a set of polynomials, where ~y = (y1, . . . , yn), and S be a region of Rn. If for any assignment υ

such that υ(~y) = ~α ∈ S, the polynomials in A have the same sign under υ, we say that A is

sign-invariant on S.

63

Theorem 2.6 (Theorem 4 in [26]). Let A ⊂ Z[~y, x] be a finite set of polynomials, where ~y =

(y1, . . . , yn), and let S be a region of Rn. If Pc(A) is sign invariant on S, then A is delineable

over S.

The projection operator Pc guarantees delineability on any region S where the projection set

Pc(A, x) is sign-invariant, due to the following:

1. The degree of fi(α, x) (and the total number of complex roots) remains invariant for any

α in S, by P1
c(A, x) being sign-invariant.

2. The multiplicities of complex roots of fi(α, x) remains invariant for any α in S, by P2
c(A, x)

being sign-invariant and Theorem 2.4.

3. The number of common complex roots of fi(α, x) and fj(α, x) remain invariant for any α

in S, by P3
c(A, x) being sign-invariant and Theorem 2.4.

A sign assignment for a set of polynomials A is a mapping σ, from polynomials in A to

{−1, 0, 1}. Given a set of polynomials A ⊂ Z[~y, x], we say a sign assignment σ is realizable

with respect to some ~α in Rn, if there exists a β ∈ R such that every f ∈ A takes the sign

corresponding to its sign assignment, i.e., sgn(f(~α, β)) = σ(f). The function sgn maps a real

number to its sign {−1, 0, 1}. We use signs(A,α) to denote the set of realizable sign assignments

of A with respect to α.

Lemma 2.1. If a set of polynomials A ⊂ Z[~y, x] is delineable over a region S, then signs(A,α)

is invariant over S.

Proof. Since A is delineable over S, by Theorem 2.3, there are real functions θi, continuous on

S and ordered, corresponding to roots of polynomials in A. We can therefore decompose the

cylinder S × R into θi-sections and (θi, θi+1)-sectors, where each of these regions is connected

and the signs of polynomials from A do not change. Let σ1 ∈ signs(A, ~α1) be a realizable sign

assignment, with β1 ∈ R, such that at (~α1, β1) every polynomial f ∈ A takes a sign corresponding

to signs(A, ~α1). Lets pick an arbitrary other α2 ∈ S, and show that we realize σ1 at ~α2. We can

pick an arbitrary point β2 in the same sector (or section) R where β1 came from. We claim that

at 〈~α2, β2〉 the polynomials in A have the signs required by σ1.

64

Assume the opposite, i.e. that there is a polynomial f ∈ A with σ1(f) = sgn(f(~α1, β1)) 6=

sgn(f(~α2, β2)). Since R is connected we can connect 〈~α1, β1〉 and 〈~α2, β2〉 with a path π that

does not leave R. Having that the sign of f is different at the endpoints of π, it must be that

there is a point 〈~α3, β3〉 on the path, where the sign of f is 0, and at least another point where

the sign of f is not 0. Now we distinguish the following cases

• If R is a (θi, θi+1)-sector, then we have isolated a root of a polynomial in A that is between

θi(~α3) and θi+1(~α3), which is impossible by the construction of the decomposition.

• If R is a θi-section, then the polynomial f(~α3) has a root, and this root diverges from θi

on R, which is impossible due to delineability.

2.3.2 Projection-Based Explanations

Suppose that we need to produce an explanation for propagating a polynomial constraint F , i.e.

we are in a state such that ¬ compatible(¬F,M), with poly(F) ∈ Z[~y, x], where ~y = (y1, . . . , yn).

To simplify the presentation, in the following, we write υ for υ[M]. The explanation procedure

explain(F,M) consists of the following steps.

IsolateCore: Find a minimal set F of literals in M such that υ(F ∪ {¬F}) does not allow a

solution for x. We call the set F ∪ {¬F} (not necessarily unique) a conflicting core.

Project: Construct a region S of Rn where A = poly(F ∪{F}) is delineable, and υ(~y) = ~α is in

S. Note that, from Lemma 2.1, ¬F is incompatible with F for any other assignment to ~y

to ~α′ in S.

Explain: Define the region S using extended polynomial constraints, obtaining a set of con-

straints E . Then, we define explain(F,M) ≡ (E ∧ F) =⇒ F .

We focus here on the second step of the procedure. To obtain the region S we will use a

projection operator which, with insights of Theorem 2.6, will ensure delineability. Since our

procedure requires a region S that contains the current assignment υ(~y) = ~α, we add the assign-

ment υ as an additional argument to the projection operator, and call such a projection operator

model-based. Given a variable assignment υ, we denote the vanishing signature of a principal

65

subresultant sequence as v-psc(f, g, x, υ) = v-sig(psc0(f, g, x), . . . , pscn(f, g, x), υ), and define our

model-based projection operator Pm(A, x, υ) as follows.

Definition 2.7 (Model-Based Projection). Given a set of polynomials A = {f1, . . . , fm} ⊂

Z[~y, x] and a variable assignment υ, the model-based Collins projector operator Pm(A, x, υ) is

defined as

⋃
f∈A

v-coeff(f, x, υ) ∪
⋃
f∈A

g=R(f,x,υ)

v-psc(g, g′x, x, υ) ∪
⋃
i<j

gi=R(fi,x,υ)
gj=R(fj,x,υ)

v-psc(gi, gj , x, υ) .

In order to denote the individual parts of the projection, in order, we designate them as P1
m(A, x, υ),

P2
m(A, x, υ) and P3

m(A, x, υ).

Example 2.7. Consider the variable assignment υ, with υ(x) = 0, and the set A containing

two polynomials f2 = x2 + y2 − 1 and f3 = −4xy − 4x+ y − 1. The projection operator Pm

maps the set A into Pm(A, y, υ)

{ (16x3 − 8x2 + x+ 16︸ ︷︷ ︸
f1

)x, −4x+ 1, 4(x+ 1)(x− 1), 2, 1 } , (2.2)

where f1 is the polynomial from Ex. 2.1. The zeros of f2 and f3 are depicted in Fig. 2.7,

together with a set of important points {−1, α1, 0,
1
4 , 1}, where α1 is the algebraic number

from Ex. 2.1. These points are exactly the roots of the projection polynomials (2.2). It

is easy to see that f2 and f3 are delineable in the intervals defined by these points. But,

considering a polynomial f4 = x3 + 2x2 + 3y2− 5, we can see that it is not delineable on the

interval (1,+∞).

We will use the projection operator Pm to compute the required region S and the constraints

E that define it, and show that A is delineable in S. First, we close the set of polynomials

A ⊂ Z[y1, . . . , yn, x] under the application of a projection operator Pm. We compute this closure

by computing sets of polynomials Pn, . . . ,P1 iteratively, starting from Pn = Pm(A, υ, x), and

66

Ω g

Ω f

Α k - 1

Α k

S k - 1

S k

-1.0
- 0.5

0.0
0.5

1.0

-1.0

- 0.5

0.0

0.5

1.0

- 2

-1

0

1

2

Figure 2.6: Diagram representing a step in construction of the explanation.

then for k = n, . . . , 2, compute the subsequent ones as

Pk−1 = Pm(Pk, yk, υ) ∪ (Pk ∩ Z[y1, . . . , yk−1]) .

Each set of polynomials Pk ⊆ Z[y1, . . . , yk] is obtained by projecting the previous set Pk+1 and

adding all the polynomials from Pk+1 that do not involve the variable yk+1.

Now, we can build the region S inductively, in a bottom-up fashion, by constructing a sequence

of regions Sk ⊂ Rk, and the corresponding set of constraints Ek that define them, such that

• P1 ∪ · · · ∪ Pk is sign invariant in Sk, and

• Pk+1 is delineable in Sk.

For convenience, we include a diagram representing one step in this construction in Figure 2.6.

67

Assume, by induction that the region Sk−1, and its defining constraints Ek−1, have already

been constructed. Now, consider the set of root objects

Rk =
{

root(f, i, yk) | f ∈ Pk, 1 ≤ i ≤ rootcount(f, yk, υ)
}
.

Under the given assignment υ each of the root objects root(f, i) is defined and evaluates to some

value ωif ∈ Ralg. Moreover, since the polynomials in Pk are delineable over Sk−1 by inductive

assumption, then by Theorem 2.3, for any other assignment υ′ that maps y1, . . . , yk−1 into Sk−1,

the polynomials f ∈ Pk will have the same number of roots, and the same number of common

roots. Therefore, the root objects in Rk will also be defined under any such υ′, and will evaluate

to values that are in the same exact order.

The values ωif partition the real line into maximal intervals where the polynomials f ∈ Pk

are sign invariant. We pick the one interval that contains υ(yk) = αk and construct the defining

constraints Ek of the region Sk by selecting one of the appropriate cases

αk ∈ (ωif , ω
j
g) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i, yk), yk <r root(g, j, yk) } ,

αk ∈ (−∞, ωif) =⇒ Ek = Ek−1 ∪ { yk <r root(f, i, yk) } ,

αk ∈ (ωif ,+∞) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i, yk) } ,

αk = ωif =⇒ Ek = Ek−1 ∪ { yk =r root(f, i, yk) } .

In other words, we pick Sk to be the region corresponding to a section (or a sector) of the cylinder

over Sk−1 that contains the assignment value (α1, . . . , αk). We know that this is well defined as,

due to delineability of Pk over Sk−1, the decomposition into the sections and sectors is possible.

Finally, we guarantee that Pk+1 is delineable in Sk. First, because P∗ = P1 ∪ . . . ∪ Pk is by

construction sign invariant over the region Sk, then so is Pm(Pk+1, υ, yk+1) as a subset of P∗.

Since the projection is sign-invariant on Sk we use the resoning similar to the proof of Theorem

2.6 to show delineability. In constrast to Pc, the model-based projection operator Pm does not

include all coefficients, reductums, and the whole psc chain, because the current assignment

indicates which coefficients will (and will not) vanish in any element of Sk. But, it does include

precisely the ones are matter, i.e. for all polynomials f, g ∈ Pk+1 and all (β1, . . . , βk) ∈ Sk the

following holds.

68

1. The degree and the total number of complex roots of f(β1, . . . , βk, yk+1) is invariant by

P1
m(Pk+1, x, υ) being sign-invariant on Sk.

2. The multiplicity of the complex roots of f(β1, . . . , βk, yk+1) is invariant by P2
m(Pk+1, x, υ)

being sign-invariant on Sk and Theorem 2.4.

3. The number of common complex roots of f(β1, . . . , βk, yk+1) and g(β1, . . . , βk, yk+1) is

invariant by P3
m(Pk+1, x, υ) being sign-invariant and Theorem 2.4.

Since the above are the requirements of delineability, Pk+1 is indeed delineable in Sk.

Once we have computed the regions S1, . . . , Sn, we can use the region S = Sn and the

corresponding constraints E = En to explain why ¬F is incompatible with F . Thus, we set

explain(F,M) ≡ (E ∧ F) =⇒ F .

Theorem 2.8. The explanation function explain(F,M) is a finite-basis explanation function for

the existential theory of real closed fields.

Proof. The key observation is that Pm(A, x, υ) ⊆ Pc(A, x), for any A, x and υ. Let A0 ⊂

Z[x1, . . . , xn] be the set of polynomials in the initial set of constraints C0. Using Collins projection

operator Pc(A, x) we define the sets of polynomialsAn, . . . ,A1 iteratively, starting fromAn = A0,

and then for k = n, . . . , 2,

Ak−1 = Pc(Ak, xk) ∪ (Ak ∩ Z[x1, . . . , xk−1])

Now, let Ac be the set An ∪ . . . ∪ A1. The set Ac is finite and for any A ⊆ Ac and variable

x, we have Pc(A, x) ⊆ Ac. Consequently, for any A ⊆ Ac, variable x, and assignment υ,

Pm(A, x, υ) ⊆ Ac.

Given a finite set of polynomials A, we have finitely many different polynomial constraints F

s.t. poly(F) ∈ A. This is clear for basic constraints, there are 6× |A| different basic constraints.

For extended constraints x Or root(f, k), we recall that k ≤ deg(f, x). Let Bc be the set

{F | poly(F) ∈ Ac}. Thus, Bc is finite.

Now, it is clear that explain(F,M) is a finite basis explanation function. Given an initial set

of constraints C0, for any application of Pm(A, x, υ) in any application of explain(F,M) in any

derivation of our procedure, we have that Pm(A, x, υ) ⊆ Ac, and consequently Bc is a finite basis

for explain(F,M).

69

- 2 -1 1 2

- 2

-1

1

2

J
J

J

�

�

�

Figure 2.7: Solutions of f2 = x2 + y2 − 1 = 0, f3 = −4xy − 4x + y − 1 = 0, and f4 =

x3 + 2x2 + 3y2− 5 = 0, with the solution set of {f2 < 0, f3 > 0, f4 < 0} emphasized. The dashed

lines represent the zeros of the projection set (2.2).

Example 2.8. Consider the polynomial f = x2 + y2 + z2 − 1, from Example 2.6, and the

constraint f < 0 corresponding to the interior of the sphere in Figure 2.5. Under an assign-

ment υ with υ(x) = 3
4 and υ(y) = − 3

4 (the red point in Fig 2.5) this constraint does not

allow a solution for z (it evaluates to z2 < − 1
8). In order to explain it, we can compute the

projection closure of A = {f}, using Pm, obtaining

P3 = A = { x2 + y2 + z2 − 1 } ,

P2 = Pm(P3, υ, z) = { 4x2 + 4y2 − 4, 2, 1 } ,

P1 = Pm(P2, υ, y) = { 256x2 − 256, 8, 4, 2, 1 } .

The sets of root objects under υ are then

R2 = { root(y2 + x2 − 1, 1, y), root(y2 + x2 − 1, 2, y) } ,

R1 = { root(x2 − 1, 1, x), root(x2 − 1, 2, x) } .

70

The root objects of R1 evaluate to −1 and 1, respectively, and since υ(x) = 3
4 = 0.75, the

constraints corresponding to the region S1 are (x > −1) and (x < 1). The root objects of

R2 evaluate to

ω1 = −
√

7

4
≈ −0.6614 , ω2 =

√
7

4
≈ 0.6614 .

Since υ(y) = − 3
4 = −0.75 and thus υ(y) ∈ (−∞, ω1), we describe the region S2 with the

additional constraint (y < root(y2 − x2 − 1, 1, y)). Using the constraints defining the region

S2 we construct the explanation explain(f < 0, υ) as

(x ≤ −1) ∨ (x ≥ 1) ∨ ¬(y < root(y2 − x2 − 1, 1, y)) ∨ (f ≥ 0) .

The explanation clause states that, in order to fix the conflict under υ, we must change υ so

as to exit the region −1 < x < 1 below (in y) the unit circle. This is the region in Fig 2.5

containing (x, y) = (3
4 ,−

3
4), colored red.

Isolating the conflicting core. Given a constraint F incompatible with a trail M , we can

compute a minimal set of constraints F from M that is not compatible with F by taking the

constraints that that caused the inconsistency and then refine it by trying to eliminate the

constraints one by one.

Example 2.9. Consider the set of polynomial constraints C = {f2 < 0, f3 > 0, f4 < 0},

where the polynomials f2 and f3 are from Ex. 2.7. The roots of these polynomials and

the feasible region of C are depicted in Fig. 2.7. Assume the transition is in the state

〈Jx 7→0, (f2 < 0), (f4 < 0), E→(f3 ≤ 0)K, C〉2, and we need to compute the explanation E of

the last propagation. Although the propagation was based on the inconsistency of C under

M , we can pick the subset {f2 < 0, f3 > 0} to produce the explanation. It is a smaller

set, but sufficient, as it is also inconsistent with M . Doing so we reduce the number of

polynomials we need to project, which, in CAD settings, is always an improvement.

71

2.4 Related Work and Experimental Results

In addition to CAD, a number of other procedures have been developed and implemented in

working tools since the 1980s, including Weispfenning’s method of virtual term substitution

(VTS) [99] (as implemented in Reduce/Redlog), and the Harrison-McLaughlin proof producing

version of the Cohen-Hörmander method [66]. Abstract Partial Cylindrical Algebraic Decom-

position [75] combines fast, sound but incomplete procedures with CAD. Tiwari [96] presents

an approach using Gröbner bases and sign conditions to produce unsatisfiability witnesses for

nonlinear constraints. Platzer, Quesel and Rümmer combine Gröbner bases with semidefinite

programming [76] for the real Nullstellensatz.

In order to evaluate the new decision procedure we have implemented a new solver nlsat, the

implementation being a clean translation of the decision procedure described in this paper. We

compare the new solver to the following solvers that have been reported to perform reasonably

well on fragments of non-linear arithmetic: the z3 3.2 [35], cvc3 2.4.1 [7], and MiniSmt 0.3 [102]

smt solvers; the quantifier elimination based solvers Mathematica 8.0 [88, 87], QEPCAD 1.65 [16],

Redlog-CAD and Redlog-VTS [40]; and the interval based iSAT [44] solver.5

We ran all the solvers on several sets of benchmarks, where each benchmark set has partic-

ular characteristics that can be problematic for a non-linear solver. The meti-tarski benchmarks

are proof obligations extracted from the MetiTarski project [3], where the constraints are of

high degree and the polynomials represent approximations of the elementary real functions be-

ing analyzed. The keymaera benchmark set contains verification conditions from the Keymaera

verification platform [76]. The zankl set of problems are the benchmarks from the QF NRA

category of the SMT-LIB library, with most problems originating from attempts to prove ter-

mination of term-rewrite systems [45]. We also have two crafted sets of benchmarks, the hong

benchmarks, which are a parametrized generalization of the problem from [53], and the kissing

problems that describe some classic kissing number problems, both sets containing instances of

increasing dimensions.

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with individual

5We ran the solvers with default settings, using the Resolve command of Mathematica, the rlcad command

for Redlog-CAD, and the rlqe for Redlog-VTS.

72

Table 2.1: Experimental results.

meti-tarski (1006) keymaera (421) zankl (166) hong (20) kissing (45) all (1658)

solver solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

nlsat 1002 343 420 5 89 234 10 170 13 95 1534 849

Mathematica 1006 796 420 171 50 366 9 208 6 29 1491 1572

QEPCAD 991 2616 368 1331 21 38 6 43 4 5 1390 4036

Redlog-VTS 847 28640 419 78 42 490 6 3 10 275 1324 29488

Redlog-CAD 848 21706 363 730 21 173 6 2 4 0 1242 22613

z3 266 83 379 1216 21 0 1 0 0 0 667 1299

iSAT 203 122 291 16 21 24 20 822 0 0 535 986

cvc3 150 13 361 5 12 3 0 0 0 0 523 22

MiniSmt 40 697 35 0 46 1370 0 0 18 44 139 2112

runs limited to 2GB of memory and 900 seconds. The results of our experimental evaluation are

presented in Table 2.1. The rows are associated with the individual solvers, and columns separate

the problem sets. For each problem set we write the number of problems that the solver managed

to solve within the time limit, and the cumulative time (rounded) for the solved problems. A plot

of solver behavior with respect to solved problems is presented in Fig 2.8. All the benchmarks,

with versions corresponding to the input languages of the solvers, as well as the accompanying

experimental data, are available from the authors website.6

The results are both revealing and encouraging. On this set of benchmarks, except for nlsat

and the quantifier elimination based solvers, all other solvers that we’ve tried have a niche problem

set where they perform well (or reasonably well), whereas on others they perform poorly. The

new nlsat solver, on the other hand, is consistently one of the best solvers for each problem set,

with impressive running times, and, overall manages to solve the most problems, in much less

time.

6http://cs.nyu.edu/~dejan/nonlinear/

73

http://cs.nyu.edu/~dejan/nonlinear/

Figure 2.8: Number of problems solved by each solver against the cumulative time of the solver

(logarithmic time scale).

74

3
Combination of Theories

Combination of theories is one of the most basic and practically important questions in smt.

When we say “combination of theories” what we are talking about is the following problem.

Given two theories, where we know how decide these theories individually, is there a way to devise

a decision procedure for the combined theory? For example, if we have a decision procedure for

the theory of arrays and a procedure to decide the theory of linear integer arithmetic, can we then

devise a procedure for the theory of arrays with integer elements. Such a combination method

should be general enough to be able to combine at least the theories we encounter in practice,

and at the same time aim for efficiency.

The seminal paper of Nelson and Oppen [70] introduced (in a way starting the field of smt)

such a framework for combining quantifier-free first-order theories in a modular fashion. Using

the Nelson-Oppen framework, decision procedures for two individual theories can be used as black

boxes to create a decision procedure for the combined theory. Although very general and widely-

used in practice, the Nelson-Oppen approach is not applicable to all theories encountered in

practical applications. A significant restriction of Nelson-Oppen is the requirement that theories

be stably-infinite. While many important theories are stably-infinite, some are not, including

those with inherently finite domains such as the theory of bit-vectors. As bit-precise reasoning

about both programs and hardware is becoming more important and more feasible, it is desirable

to find ways of overcoming this restriction.

The core idea driving the Nelson-Oppen method (and ensuring its correctness) is the exchange

of equalities and disequalities over the interface variables between the theories involved in the

combination. Interface variables are the problem variables that are shared by both theories, and

both theories must agree on an arrangement over these variables. Most modern smt solvers

perform the search for such an arrangement by first using aggressive theory propagation to

determine as much of the arrangement as possible and then relying on an efficient sat solver to

guess the rest of the arrangement, backtracking and learning lemmas as necessary [5, 12, 20]. In

some cases, if the theories that are being combined have additional properties, such as convexity

and/or complete and efficient equality propagation, there are more efficient ways of obtaining a

75

suitable arrangement. But, in general, since the number of shared variables can be substantial,

guessing an arrangement over the shared variables can have an exponential impact1 on the

running time [73]. Trying to minimize the burden of non-deterministic guessing is thus of the

utmost importance for a practical and efficient combination mechanism. For example, a recent

model-based theory combination approach [34], in which the solver keeps a model for each theory,

takes the optimistic stance of eagerly propagating all equalities that hold in the model (whether

or not they are truly implied), obtaining impressive performance improvements.

In this chapter we will present theoretical results on combination of theories that resolve

the mentioned limitations of the Nelson-Oppen approach, and give a new combination method

that can correctly combine a wider range of theories and does so more efficiently, by allowing a

reduction in the amount of non-deterministic guessing. To ensure correctness in the cases where

Nelson-Oppen does not apply, we rely on the concept of polite theories [79]. Polite theories

can be combined with an arbitrary other theory and do not require much additional work on

the side of the individual theories. There are other related approaches (e.g. [95, 63]), but they

require reasoning about cardinalities explicitly which is an additional computational burden we

can avoid. And, while proving that a theory is polite can be difficult and needs to be done

on a per-theory basis, once this is done, the combination method can be easily implemented.

After resolving the theoretical limitations, we then go on to tackle the complexity overhead

imposed by Nelson-Oppen. We equip the theories with an equality propagator and a care function.

The role of the theory-specific equality propagator is, given a context, to propagate entailed

equalities and disequalities over the interface variables. The care function, on the other hand,

provides information about which variable pairs among the interface variables are important

for maintaining the satisfiability of a given formula. With the information provided by these

two functions we can, in many cases, drastically reduce the search space for finding a suitable

arrangement.

The main result of this chapter is a reformulation of the Nelson-Oppen method that uses

these two functions to decide a combination of two theories. The method can easily be adapted

to the combination method for polite theories, where reducing the number of shared variables

1If the two theories can decided in time O(T1(n)) and O(T2(n)), the combination can be decided in O(2n
2 ×

(T1(n) + T2(n))).

76

is even more important (as the polite theory combination method requires extending the set of

interface variables significantly).

3.1 Preliminaries

We start with a brief overview of the syntax and semantics of many-sorted first-order logic. For

a more detailed exposition, we refer the reader to [42, 93].

A signature Σ is a triple (S, F, P) where S is a set of sorts, F is a set of function symbols, and

P is a set of predicate symbols. For a signature Σ = (S, F, P), we write ΣS for the set S of sorts,

ΣF for the set F of function symbols, and ΣP for the set P of predicates. Each predicate and

function symbol is associated with an arity, a tuple constructed from the sorts in S. Functions

whose arity is a single sort are called constants. We assume that each set of predicates P includes

the equality predicates =σ, for each sort σ ∈ S, where we omit the subscript σ when obvious

from the context. We write Σ1 ∪ Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2) for the union of signatures

Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2) (with arities as in Σ1 and Σ2). In this thesis we always

assume that, except for equality, function and predicate symbols from different theories do not

overlap, so that the arities in the union are well-defined. On the other hand, two different theories

are allowed to have non-disjoint sets of sorts. Additionally, we write Σ1 ⊆ Σ2 if S1 ⊆ S2, F1 ⊆ F2,

P1 ⊆ P2, and the symbols of Σ1 have the same arity as those in Σ2.

We assume the standard notions of a Σ-term, Σ-literal, and Σ-formula. In the following, we

assume that all formulas are quantifier-free, if not explicitly stated otherwise. A literal is called

flat if it is of the form x = y, x 6= y, x = f(y1, . . . , yn), p(y1, . . . , yn), or ¬p(y1, . . . , yn), where

x, y, y1, . . . , yn are variables, f is a function symbol, and p is a predicate symbol. If φ is a term

or a formula, we will denote by varsσ(φ) the set of variables of sort σ that occur (free) in φ. We

overload this function in the usual way, varsS(φ) denoting variables in φ of the sorts in S, and

vars(φ) denoting all variables in φ. If the set of free variables vars(φ) in a (possibly quantified)

formula φ is empty, we call φ a sentence. We also sometimes refer to a set Φ of formulas as if it

were a single formula, in which case the intended meaning is the conjunction
∧

Φ of the formulas

in the set.

Let Σ be a signature, and let X be a set of variables whose sorts are in ΣS. A Σ-interpretation

77

A over X is a map that interprets each sort σ ∈ ΣS as a non-empty domain Aσ,2 each variable

x ∈ X of sort σ as an element xA ∈ Aσ, each function symbol f ∈ ΣF of arity σ1×· · ·×σn× τ as

a function fA : Aσ1 × · · · × Aσn → Aτ , and each predicate symbol p ∈ ΣP of arity σ1 × · · · × σn

as a subset pA of Aσ1
× · · · × Aσn . The equality predicate =σ is always interpreted as equality

in the domain Aσ. A Σ-structure is a Σ-interpretation over an empty set of variables.

As usual, the interpretations of terms and formulas in an interpretation A are defined in-

ductively over their structure. For a term t, we denote with tA the evaluation of t under the

interpretation A. Likewise, for a formula φ, we denote with φA the truth-value (true or false)

of φ under interpretation A. A Σ-formula φ is satisfiable iff it evaluates to true in some Σ-

interpretation over (at least) vars(φ). Let A be an Ω-interpretation over some set V of variables.

For a signature Σ ⊆ Ω, and a set of variables U ⊆ V , we denote with AΣ,U the interpretation

obtained from A by restricting it to interpret only the symbols in Σ and the variables in U .

We will use the definition of theories as classes of structures, rather than sets of sentences.

We define a theory formally as follows (see e.g. [92] and Definition 2 in [79]).

Definition 3.1 (Theory). Given a set of Σ-sentences Ax a Σ-theory TAx is a pair (Σ,A) where

Σ is a signature and A is the class of Σ-structures that satisfy Ax.

Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation A such that AΣ,∅ ∈ A,

i.e. it if we take out the interpretation of the variables it is one of the structures belonging to

the theory. A Σ-formula φ is T -satisfiable iff it is satisfiable in some T -interpretation A. This is

denoted as A �T φ, or just A � φ if the theory is clear from the context.

As theories in our formalism are represented by classes of structures, a combination of two

theories is represented by those structures that can interpret both theories (Definition 3 in [79]).

Definition 3.2 (Combination). Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two theories. The

combination of T1 and T2 is the theory T1⊕T2 = (Σ,A) where Σ = Σ1∪Σ2 and A = {Σ-structures

A | AΣ1,∅ ∈ A1 and AΣ2,∅ ∈ A2}.

The set of Σ-structures resulting from the combination of two theories is indeed a theory

in the sense of Definition 3.1. If Ax1 is the set of sentences defining theory T1, and Ax2 is

2In the rest of the chapter we will use the calligraphic letters A, B, . . . to denote interpretations, and the

corresponding subscripted Roman letters Aσ , Bσ , . . . to denote the domains of the interpretations.

78

the set of sentences defining theory T2, then A is the set of Σ-structures that satisfy the set

Ax = Ax1 ∪Ax2 (see Proposition 4 in [79]).

3.2 Nelson-Oppen

Given decision procedures for the satisfiability of formulas in theories T1 and T2, we are interested

in constructing a decision procedure for satisfiability in T1 ⊕ T2 using these procedures as black

boxes. The Nelson-Oppen combination method [70, 92, 93] gives a general mechanism for doing

this. Given a formula φ over the combined signature Σ1 ∪ Σ2, the first step is to purify φ by

constructing an equisatisfiable set of formulas φ1 ∪ φ2 such that each φi consists of only Σi-

formulas. This can easily be done by finding a pure (i.e. Σi- for some i) subterm t, replacing

it with a new variable v, adding the equation v = t, and then repeating this process until all

formulas are pure. The next step is to force the decision procedures for the individual theories

to agree on whether variables appearing in both φ1 and φ2 (called shared or interface variables)

are equal. This is done by introducing an arrangement over the shared variables [79, 92].

Definition 3.3 (Arrangement). Given a set of variables V over a set of sorts S, with Vσ =

varsσ(V) so that V =
⋃
σ∈S Vσ, we call a formula δV an arrangement of V if there exists a family

of equivalence relations E = { Eσ ⊆ Vσ × Vσ | σ ∈ S }, such that the equivalence relations

induce δV , i.e. δV =
∧
σ∈S δσ, where each δσ is determined by Eσ as follows:

δσ = { x = y | (x, y) ∈ Eσ } ∪ { x 6= y | (x, y) ∈ (Vσ × Vσ) \ Eσ } .

When the family of equivalence relations is not clear from the context, we will denote the ar-

rangement as δV (E).

The Nelson-Oppen combination theorem states that φ is satisfiable in T1 ⊕ T2 iff there exists

an arrangement δV of the shared variables V = vars(φ1)∩ vars(φ2) such that φi ∪ δV is satisfiable

in Ti, for i = 1, 2. However, as mentioned earlier, some restrictions on the theories are necessary

in order for the Nelson-Oppen method to be complete. Sufficient conditions for completeness

are:

• the two signatures have no function or predicate symbols in common, and

79

• the two theories are stably-infinite over (at least) the set of common sorts ΣS
1 ∩ ΣS

2.

Stable-infiniteness was originally introduced in a single-sorted setting [73]. In the many-sorted

setting, stable-infiniteness is defined with respect to a subset of the signature sorts (Definition 6

from [93]).

Definition 3.4 (Stable-Infiniteness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and

let T be a Σ-theory. We say that T is stably-infinite with respect to S if for every T -satisfiable

quantifier-free Σ-formula φ, there exists a T -interpretation A satisfying φ, such that Aσ is infinite

for each sort σ ∈ S.

The following theorem, together with the Läwenheim-Skolem theorem and the property of

stable-infiniteness, is the basis for showing that the Nelson-Oppen is correct, and we will be

relying on it when proving correctness results in the rest of this chapter. It is an adaptation of

Theorems 10 and 11 of [93].

Theorem 3.5. Let Ti be a Σi-theory for i = 1, 2 such that the two theories have no function or

predicate symbols in common. Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2, and let S = ΣS
1 ∩ ΣS

2 be the set of

shared sorts. Let Γi be a set of Σi-literals for i = 1, 2, and let V = vars(Γ1)∩vars(Γ2) be the set of

variables shared between Γ1 and Γ2. If there exists a T1-interpretation A and a T2-interpretation

B and an arrangement δV of V such that:

• A |=T1 Γ1 ∪ δV ,

• B |=T2 Γ2 ∪ δV , and

• |Aσ| = |Bσ|, for all σ ∈ S,

then there exists a T -interpretation C such that:

• C |=T Γ1 ∪ Γ2 ∪ δV ,

• Cσ = Aσ for all σ ∈ ΣS
1, and

• Cσ = Bσ for all σ ∈ ΣS
2 \ S.

80

Proof. Let Vσ = varsσ(Γ1) ∩ varsσ(Γ2), for σ ∈ S. Define a family of functions h = {hσ : V Bσ 7→

V Aσ | σ ∈ S} such that hσ(vB) = vA for each v ∈ Vσ. Since the interpretations B and A agree

on equalities over V (by satisfying the same arrangement δV), the functions hσ are well-defined

and bijective. This implies that |V Bσ | = |V Aσ | and, since |Bσ| = |Aσ| for σ ∈ S, we can extend

each function to a bijection h′σ : Bσ 7→ Aσ. Let h′σ be the identity function for each σ ∈ ΣS
2 \ S.

Now, we can define a new Σ2-interpretation B′ (over the same set of variables as in B) in such a

way that h′ =
⋃
σ∈S h

′
σ is an isomorphism from B to B′:

B′σ =


Aσ if σ ∈ S

Bσ if σ ∈ ΣS
2 \ S

vB
′

= h′(vB)

fB
′
(b1, . . . , bn) = h′(fB(h′−1(b1), . . . , h′−1(bn))), and

〈b1, . . . , bn〉 ∈ pB
′

iff
〈
h′−1(b1), . . . , h′−1(bn)

〉
∈ pB.

Because h′ is an isomorphism, we have B′ |= Γ2 ∪ δV . We can now define the Σ-interpretation C

as follows:

Cσ =


Aσ if σ ∈ ΣS

1 \ S

Aσ = B′σ if σ ∈ S

B′σ = Bσ if σ ∈ ΣS
2 \ S

vC =


vA if v is of sort σ ∈ ΣS

1 \ S

vA = vB
′

if v is of sort σ ∈ S

vB
′

if v is of sort σ ∈ ΣS
2 \ S

fC =


fA if f ∈ ΣF1

fB
′

if f ∈ ΣF2

pC =


pA if p ∈ ΣP1

pB
′

if p ∈ ΣP2

Clearly, Cσ = Aσ for all σ ∈ ΣS
1 and Cσ = Bσ for all σ ∈ ΣS

2 \ S. It is also easy to see from the

definition above that CΣ1,vars(Γ1) = A and CΣ2,vars(Γ2) = B′, and thus C |= Γ1 ∪ Γ2 ∪ δV .

81

3.3 Polite Theories

Although many interesting theories are stably-infinite, some important theories are not. For ex-

ample, the theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this

theory cannot be stably-infinite. The Nelson-Oppen method may be incomplete for combinations

involving this theory as shown by the following example.

Example 3.1. Consider the theory of arrays Tarray where both indices and elements are of the

same sort bv, so that the sorts of Tarray are {array, bv}, and a theory Tbv that requires the

sort bv to be interpreted as bit-vectors of size 1. Both theories are decidable and we would

like to decide the combination theory in a Nelson-Oppen-like framework. Let a1, . . . , a5 be

array variables and consider the following constraints:

ai 6= aj , for 1 ≤ i < j ≤ 5 .

These constraints are entirely within the language of Tarray (i.e. no purification is necessary),

there are no shared variables, and there are no constraints over bit-vectors. Thus, the array

theory decision procedure is given all of the constraints and the bit-vector decision procedure

is given an empty set of constraints. Any decision procedure for the theory of arrays will tell

us that these constraints are satisfiable. But, there are only four possible different arrays

with elements and indices over bit-vectors of size 1, so this set of constraints is unsatisfiable.

Polite theories were introduced in [79] to extend the Nelson-Oppen method to allow combina-

tions with non-stably-infinite theories. A theory can be combined with any other theory (with no

common function or predicate symbols) if it is polite with respect to the set of shared sorts. The

notion of politeness depends on two other important properties: smoothness and finite witness-

ability. In this section, we define these terms, noting that our definition of finite witnessability

differs from that given in [79] in order to fix a correctness problem in that paper (as we explain

below).

First we define the smoothness property of a theory (Definition 7 from [79]).

82

Definition 3.6 (Smoothness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T

be a Σ-theory. We say that T is smooth with respect to S if:

• for every T -satisfiable quantifier-free Σ-formula φ,

• for every T -interpretation A satisfying φ,

• for all choices of cardinal numbers κσ, such that κσ ≥ |Aσ| for all σ ∈ S,

there exists a T -interpretation B satisfying φ such that |Bσ| = κσ, for all σ ∈ S.

Recall that when a theory T is stably-infinite with respect to a sort σ and a T -interpretation

exists, we can always find another T -interpretation in which the domain of σ is infinite. On the

other hand, if T is smooth with respect to σ and we have a T -interpretation, then there exist

interpretations in which the domain of σ can be chosen to be any larger size. Hence every theory

that is smooth with respect to a set of sorts S is also stably-infinite with respect to S.

As can be seen from the proof of Theorem 3.5, being able to combine two interpretations from

different theories mainly depends on the ability to bring the domains of the shared sorts to the

same size. This is where stable-infiniteness helps in the Nelson-Oppen framework: it ensures that

the domains of the shared sorts can have the same infinite cardinalities. Since we are interested

in combining theories that may require finite domains, we need more flexibility than that afforded

by stable-infiniteness. Smoothness gives us more flexibility in resizing structures upwards. This

is not quite enough as we also need to ensure that the structures are small enough. Rather than

attempting to resize structures downwards, we rely on the notion of finite witnessability which

allows us to find a kind of “minimal” structure for a theory.

Definition 3.7 (Finite Witnessability). Let Σ be a signature, let S ⊆ ΣS be a set of sorts,

and let T be a Σ-theory. We say that T is finitely witnessable with respect to S if there exists a

computable function, witness, which, for every quantifier-free Σ-formula φ, returns a quantifier-

free Σ-formula ψ = witness(φ) such that

• φ and (∃−→w)ψ are T -equivalent, where −→w = vars(ψ) \ vars(φ) are fresh variables;

• if ψ ∧ δV is T -satisfiable, for an arrangement δV , where V is a set of variables of sorts in S,

then there exists a T -interpretation A satisfying ψ ∧ δV such that Aσ = [varsσ(ψ ∧ δV)]
A

,

for all σ ∈ S,

83

where the notation [U]
A

indicates the set { vA | v ∈ U }.

Both of the definitions above use an arbitrary quantifier-free formula φ in the definition. As

shown by Proposition 11 and Proposition 12 in [80] (see Lemmas B.1, B.2 in Appendix B), it is

enough to restrict ourselves to conjunctions of flat literals in the definitions. This follows in a

straightforward fashion from the fact that we can always construct an equisatisfiable formula in

disjunctive normal form over flat literals.

It is important to note that our definition of finite witnessability differs from the definition

given in [79]. Their definition is equivalent to ours except that there is no mention of an arrange-

ment (i.e. the formula ψ appears alone everywhere ψ∧ δV appears in the definition above).3 The

reason for this is explained and illustrated in Section 3.3.1 below.

Finally, a theory that is both smooth and finitely witnessable is polite (Definition 9 in [79]).

Definition 3.8 (Politeness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be a

Σ-theory. We say that T is polite with respect to S if it is both smooth and finitely witnessable

with respect to S.

Note that any theory is polite (stably-infinite, smooth, finitely witnessable) with respect to

an empty set of sorts.

Example 3.2. The extensional theory of arrays Tarr operates over the signature Σarr that

contains the sorts {array, index, elem} and function symbols

read : array × index 7→ elem , write : array × index× elem 7→ array ,

where read represents reading from an array at a given index, and write represents writing

a given value to an array at an index. The semantics of the theory are given by the three

3It is worth noting that in order to prove Proposition 3.1 and Theorem B.6, below, it is sufficient to require

V to be equal to varsS(ψ2) rather than letting it be an arbitrary set of variables with sorts in S. However, this

more general flexibility is needed for the proofs of Lemma B.2 and Theorem B.1.

84

axioms:

∀ a:array. ∀ i:index. ∀ v:elem. read(write(a, i, v), i) = v , (RW1)

∀ a:array. ∀ i, j:index. ∀ v:elem. i 6= j → read(write(a, i, v), j) = read(a, j) , (RW2)

∀ a, b:array. (∀ i:index. read(a, i) = read(b, i))→ a = b . (EX)

The first two axioms above specify the behavior of read when operating over a write, and the

third axiom corresponds to the extensionality, making any two arrays with the same content

equal.

The flat literals of the theory are of the form x = read(a, i), a = write(b, i, x), i = j, i 6= j,

x = y, x 6= y, a = b, a 6= b, where here and below we use the convention that x, y, v are

variables of sort elem; i, j are variables of sort index; a, b, c are variables of sort array; and

w, z are variables of any sort.

It is not hard to see that Tarray is smooth with respect to the sorts {index, elem} – any

interpretation satisfying a quantifier-free formula φ can be extended to arbitrary cardinalities

over indices and elements by adding as many additional indices and elements as we need while

keeping the satisfiability of φ.

As for finite witnessability, it is enough to use a witness transformation that works over

conjunctions of flat literals and replaces each array disequality a 6= b with the conjunction

of literals

e1 = read(a, i) ∧ e2 = read(b, i) ∧ e1 6= e2 ,

where i is a fresh variable of sort index and e1, e2 are fresh variables of sort elem. The witness

function creates a fresh witness index i, to witness the position where a and b are different,

and names those different elements e1 and e2.

For the detailed proof of politeness for the theory Tarray we refer the reader to [79].

85

3.3.1 Finite Witnessability Revisited

A main result of [79] is a combination method for two theories, one of which is polite over the

shared sorts.

Proposition 3.1 (Proposition 12 of [79]). Let Ti be a Σi-theory for i = 1, 2 such that the

two theories have no function or predicate symbols in common. Assume that T2 is polite with

respect to S = ΣS
1∩ΣS

2. Also, let Γi be a set of Σi literals for i = 1, 2, and let ψ2 = witnessT2(Γ2).

Finally, let Vσ = varsσ(ψ2), for each σ ∈ S, and let V =
⋃
σ∈S Vσ. Then the following are

equivalent:

1. Γ1 ∪ Γ2 is (T1 ⊕ T2)-satisfiable;

2. There exists an arrangement δV such that Γ1 ∪ δV is T1-satisfiable and {ψ2} ∪ δV is T2-

satisfiable.

Proposition 3.1 differs from the standard Nelson-Oppen theorem in its application of the

witness function to Γ2 and in that the arrangement is over all the variables with shared sorts in

ψ2 rather than just over the shared variables.

As mentioned above, our definition of finite witnessability (Definition 3.7 above) differs from

the definition given in [79]. Without the change, Proposition 3.1 does not hold, as demonstrated

by the following example.

Example 3.3. Let Σ be a signature containing no function or predicate symbols and a single

sort σ. Let T1 be a Σ-theory containing all structures such that the domain of σ has exactly

one element (i.e. the structures of T1 are those satisfying ∀x y. x = y). Similarly, let T2 be

a Σ-theory over the same sort σ containing all structures such that the domain of σ has at

least two elements (i.e. axiomatized by ∃x y. x 6= y). Note that the combination of these

two theories contains no structures, and hence no formula is satisfiable in T1 ⊕ T2.

Theory T2 is clearly smooth with respect to σ. To be polite, T2 must also be finitely

witnessable with respect to σ. Consider the following candidate witness function:

witness(φ) , φ ∧ w1 = w1 ∧ w2 = w2 ,

86

where w1 and w2 are fresh variables of sort σ not appearing in φ.

Let φ be a conjunction of flat Σ-literals, let ψ = witness(φ), and let V = vars(ψ). It

is easy to see that the first condition for finite witnessability holds: φ is satisfied in a T2

model iff ∃w1w2. ψ is. Now, consider the second condition according to [79] (i.e. without

the arrangement). We must show that if ψ is T2-satisfiable (in interpretation B, say), then

there exists a T2-interpretation A satisfying ψ such that Aσ = [V]
A

. The obvious candidate

for A is obtained by setting Aσ = [V]
B

and by letting A interpret only those variables in

V (interpreting them as in B). Clearly A satisfies ψ. However, if [V]
B

contains only one

element, then A is not a T2-interpretation. But in this case, we can always first modify

the way variables are interpreted in B to ensure that wB2 is different from wB1 (B is a T2-

interpretation, so Bσ must contain at least two different elements). Since w2 does not appear

in φ, this change cannot affect the satisfiability of ψ in B. After making this change, [V]
B

is guaranteed to contain at least two elements, so we can always construct A as described

above. Thus, the second condition for finite witnessability is satisfied and the candidate

witness function is indeed a witness function according to [79].

As we will see below, however, this witness function leads to problems. Notice that

according to our definition of finite witnessability, the candidate witness function is not

acceptable. To see why, consider again the second condition. Let δV be an arrangement of

V . According to our definition, we must show that if ψ ∧ δV is satisfied by T2-interpretation

B, then there exists a T2-interpretation A satisfying ψ ∧ δV such that Aσ = [V]
A

. We can

consider the same construction as above, but this time, the case when [V]
B

contains only one

element cannot be handled as before. This is because δV requires A to preserve equalities

and disequalities in V . In particular, δV may include w1 = w2. In this case, there is no way

to construct an appropriate interpretation A.

Now, we show what happens if the candidate witness function given above is allowed.

Consider using Proposition 3.1 to check the satisfiability of x = x (where x is a variable of

sort σ). Although this is trivially satisfiable in any theory that has at least one structure, it is

not satisfiable in T1⊕T2 since there are no structures to satisfy it. To apply the proposition

we let

87

• Γ1 = ∅,Γ2 = {x = x},

• ψ2 = witness(Γ2) = (x = x ∧ w1 = w1 ∧ w2 = w2), and

• V = vars(ψ2) = {x,w1, w2}.

Proposition 3.1 allows us to choose an arrangement over the variables of V . Let

δV = {x = w1, x = w2, w1 = w2}

be an arrangement over the variables in V . It is easy to see that Γ1 ∪ δV is satisfiable in

a T1-interpretation A and ψ2 ∪ δV is satisfiable in a T2-interpretation B, where A and B

interpret the domains and variables as follows:

σA = {a1}, σB = {b1, b2}, xA = wA1 = wA2 = a1, x
B = wB1 = wB2 = b1 .

Thus, according to Proposition 3.1, Γ1 ∪ Γ2 should be T1 ⊕ T2-satisfiable, but we know that

this is impossible.

Finally, consider what happens if we use a witness function for T2 that is acceptable

according to our new definition:

witness(φ) , φ ∧ w1 6= w2 .

If we look at the same example using this witness function, we can verify that for every

arrangement δV , either w1 6= w2 ∈ δV , in which case Γ1 ∪ δV is not T1-satisfiable, or else

w1 = w2 ∈ δV , in which case witness(Γ2) ∪ δV is not T2-satisfiable.

As shown by the example above, the definition of finite witnessability in [79] is not strong

enough. It allows witness functions that can falsify Proposition 3.1. The changes in Definition 3.7

remedy the problem. For completeness, we include the proof of Proposition 3.1 below, adapted

from [79], indicating where the proof fails if the weaker definition of finite witnessability is used.

Proof. (1 ⇒ 2): Assume that Γ1 ∪ Γ2 is (T1 ⊕ T2)-satisfiable and let −→v = vars(ψ2) \ vars(Γ2).

Since Γ2 and (∃−→v)ψ2 are T2-equivalent, it follows that Γ1 ∪ {ψ2} is also (T1 ⊕ T2)-satisfiable.

88

We can therefore fix a (T1 ⊕ T2)-interpretation A satisfying Γ1 ∪ {ψ2}. Next, let δV be the

arrangement of V induced by A, that is the arrangement determined by the equivalence classes

Eσ = {(x, y) | x, y ∈ Vσ and xA = yA}, for σ ∈ S. By construction we have an interpretation

A such that both Γ1 ∪ δV is T1 satisfied and {ψ2} ∪ δV is T2-satisfied.

(2 ⇒ 1): Let A be a T1-interpretation satisfying Γ1 ∪ δV , and let B be a T2-interpretation

satisfying {ψ2} ∪ δV . Since T2 is finitely witnessable, we can assume without loss of generality

that Bσ = V Bσ .4 For each σ ∈ S we now have that

|Bσ| = |V Bσ | since Bσ = V Bσ ,

= |V Aσ | since both A and B satisfy δV ,

≤ |Aσ| since V Aσ ⊆ Aσ .

Now we can use the smoothness of T2 to obtain a T2-interpretation C that satisfies {ψ2} ∪ δV

such that |Cσ| = |Aσ|, for each σ ∈ S. Now we have all the conditions necessary to combine

T1-interpretation A and T2-interpretation C into a (T1⊕T2)-interpretation D, via Theorem 3.5,5

D satisfies Γ1∪{ψ2}∪ δV . Since Γ2 and (∃−→v)ψ2 are T2-equivalent, it follows that D also satisfies

Γ1 ∪ Γ2.

In the same paper, the authors also prove that a number of theories are polite. We are

confident that the proofs of politeness for the theories of equality, arrays, sets, and multi-sets

are still correct, given the new definition. Other results in the paper (in particular the proof of

politeness for the theory of lists and the proof that shiny theories are polite) have some problems

in their current form. We hope to address these in future work.

3.4 New Combination Method

In this section we present a new method for combining two signature-disjoint theories. The

method is based on Nelson-Oppen, but it makes equality propagation explicit and also includes a

4This is where the proof breaks with the original definition of finite witnessability–it is clear that in order to

make this assumption and keep the satisfiability of {ψ2} ∪ δV we need to include δV in the definition of finite

witnessability.
5Note that δV may contain more variables than those shared between Γ1 and ψ2, but we can still apply the

theorem simply by assuming that δV is included among the literals of both theories.

89

care function for each theory, enabling a more efficient mechanism for determining equalities and

dis-equalities among the shared variables. Another notable difference from the original method is

that we depart from viewing the combination problem as symmetric. Instead, as in the method

for combining polite theories [56, 57, 79], one of the theories is designated to take the lead in

selecting which variable pairs are going to be part of the final arrangement.

Example 3.4. We will illustrate the Nelson-Oppen method and motivate the possibility of

improving it’s efficiency by means of an example. Suppose we would like to check the

following formula φ for satisfiability:∧
1≤i<j≤3

f(xi, x4) 6= f(xj , x4)︸ ︷︷ ︸
φeuf

∧
∧

1≤i≤4

(0 ≤ xi ∧ xi ≤ 1)︸ ︷︷ ︸
φlia

.

Assume that the variables x1, . . . , x4 are of integer sort and f is an uninterpreted function

symbol. The formula φ belongs to the language that combines the theory of linear integer

arithmetic (Tlia) and the theory of uninterpreted functions (Teuf).

In order to apply the Nelson-Oppen method, we first partition the formula φ into φeuf

(belonging to Teuf) and φlia (belonging to Tlia). Note that both of these formulas are

satisfiable in their corresponding theories. But, to check satisfiability in the combined theory,

in accordance with Nelson-Oppen, we must find an arrangement δ of the set of shared

variables V = {x1, x2, x3, x4} such that both φeuf ∪ δ is satisfiable in Teuf and φlia ∪ δ is

satisfiable in Tlia.

To check this, we must search through the 15 different ways (this is the Bell number B4)

of arranging the variables, and check each one.

δ1
V = {x1 = x2, x1 = x3, x1 = x4, x2 = x3, x2 = x4, x3 = x4} ,

δ2
V = {x1 6= x2, x1 6= x3, x1 6= x4, x2 = x3, x2 = x4, x3 = x4} ,
...

δ15
V = {x1 6= x2, x1 6= x3, x1 6= x4, x2 6= x3, x2 6= x4, x3 6= x4} .

It turns out that none of these arrangements work for both theories, and we may thus

conclude that the original formula φ is unsatisfiable. To see that φ is unsatisfiable, it is

90

enough to notice that φeuf requires the three variables x1, x2, x3 (but not x4) to be different,

but this is impossible since φlia requires these variables to take on values from a set of only

two integers.

The important insight is that the variable x4 is not part of the reasoning that leads to

inconsistency and thus, intuitively, it should be sufficient to check only arrangements over

V ′ = {x1, x2, x3}. The number of different arrangements over V ′ is much smaller (the Bell

number B3 = 5), and thus the complexity of the search would be significantly reduced.

Note that even if the arrangements are explored incrementally, with each theory solver

propagating entailed equalities (as is typically done in efficient implementations), effort will

still be wasted if any case-split involving x4 is done. Without any additional information to

guide the search, there is no guarantee that this wasted effort can be avoided.

In this section we will use a more general definition of an arrangement that allows us to

restrict the pairs of variables that we are interested in. We do so by introducing the notion of a

care graph.

Definition 3.9 (Care Graph). Given a set V of variables, a graph G = 〈V,E〉 is a care graph

over V if E ⊆ V × V and edges exist only between variables of the same sort. A care graph is

trivial if it contains all possible edges.

Intuitively, if an edge (x, y) ∈ E is present in a care graph, it means that we are interested in

the relationship between the variables x and y.

Definition 3.10 (Arrangement over G). Given a care graph G = 〈V,E〉, we call δG an

arrangement over G if δG is the restriction of some arrangement of V (in the sense of Definition

3.3) to the edges in G. More precisely, δG is an arrangement over G if there exists an arrangement

δ of V such that δG = { x = y ∈ δ | (x, y) ∈ E } ∪ { x 6= y ∈ δ | (x, y) ∈ E }.

To simplify the presentation (as well as the formal proofs), we present the method in its non-

deterministic flavor, following the approach of [92]. We will first define the equality propagator

and the care function, and then proceed to presenting and proving correctness of the combination

method.

91

Definition 3.11 (Equality Propagator). For a Σ-theory T we call a function PT J·K an equal-

ity propagator for T if, for every set V of variables, it maps every set φ of flat Σ-literals into a

set of equalities and dis-equalities between variables:

PT JV K(φ) = {x1 = y1, . . . , xm = ym} ∪ {z1 6= w1, . . . , zn 6= wn} ,

where vars(PT JV K(φ)) ⊆ V and

1. for each equality xi = yi ∈ PT JV K(φ) it holds that φ �T xi = yi;

2. for each dis-equality zi 6= wi ∈ PT JV K(φ) it holds that φ �T zi 6= wi;

3. PT JV K is monotone, i.e., φ ⊆ ψ =⇒ PT JV K(φ) ⊆ PT JV K(ψ); and

4. PT JV K contains at least those equalities and dis-equalities, over variables in V , that appear

in φ.

An equality propagator, given a set of theory literals, returns a set of entailed equalities and

dis-equalities between the variables in V . It does not need to be complete (i.e. it does not need to

return all entailed equalities and dis-equalities), but the more complete it is, the more helpful it

is in reducing the arrangement search space (note also that for a complete propagator, properties

3 and 4 are consequences of properties 1 and 2).

When combining two theories, the combined theory can provide more equality propagation

than just the union of the individual propagators. The following construction defines an equality

propagator that reuses the individual propagators in order to obtain a propagator for the com-

bined theory. This is achieved by allowing the propagators to incrementally exchange literals

until a fix-point is reached.

Definition 3.12 (Combined Propagator). Let T1 and T2 be two theories over the signatures

Σ1 and Σ2, equipped with equality propagators PT1
J·K and PT2

J·K, respectively. Let T = T1⊕T2

and Σ = Σ1 ∪ Σ2. Let V be a set of variables and φ a set of flat Σ-literals partitioned into a set

φ1 of Σ1-literals and a set φ2 of Σ2-literals. We define the combined propagator PT J·K for the

theory T as

PT JV K(φ) = (PT1
⊕PT2

)JV K(φ) = ψ∗1 ∪ ψ∗2 ,

92

where 〈ψ∗1 , ψ∗2〉 is the least fix-point of the following operator F

F〈ψ1, ψ2〉 = 〈PT1JV K(φ1 ∪ ψ2),PT2JV K(φ2 ∪ ψ1)〉 .

The fix-point exists as the propagators are monotone and the set V is finite. Moreover, the

value of the fix-point is easily computable by iteration from 〈∅,∅〉. Also, it is clear from the

definition that the combined propagator is at least as strong as the individual propagators, i.e.,

PT1JV K(φ1) ⊆ PT JV K(φ1) ⊆ PT JV K(φ), PT2JV K(φ2) ⊆ PT JV K(φ2) ⊆ PT JV K(φ).

Definition 3.13 (Care Function). For a Σ-theory T we call a function CJ·K a care function

for T with respect to a T -equality propagator PT J·K when for every set V of variables and every

set φ of flat Σ-literals

1. CJV K maps φ to a care graph G = 〈V,E〉;

2. if x = y or x 6= y are in PT JV K(φ) then (x, y) 6∈ E;

3. if G = 〈V,∅〉 and φ is T -satisfiable then, for any arrangement δV such that PT JV K(φ) ⊆ δV ,

it holds that φ ∪ δV is also T -satisfiable.

The main feature of a care function is that when it returns an empty graph, this guarantees

that φ can be satisfied regardless of the relationships between the remaining variables. In other

cases, notice that the definition does not specify (beyond requirement 2) anything about what the

care graph should contain. This is because no additional conditions are required for correctness.

However, to be effective, a care function should return a care graph which (to the extent that is

efficiently possible) contains only edges corresponding to pairs of variables which, if set equal or

dis-equal, could affect the satisfiability of the formula φ.

Example 3.5. For any Σ-theory T and a set of variables V , the trivial care function C0J·K is

the one that maps a set of variables to a maximal care graph, i.e.,

C0JV K(φ) = 〈V,E0〉 , where (x, y) ∈ E0 iff



x ∈ V, y ∈ V,

x and y have the same sort,

x = y 6∈ PT JV K(φ), and

x 6= y 6∈ PT JV K(φ) .

93

Notice that C0J·K trivially satisfies the conditions of Definition 3.13 with respect to any

equality propagator. To see this, the only case to consider is when the care graph returned

has no edges and φ is satisfiable. If the care graph is empty that means that the arrangement

is fully implied by the propagator, i.e. for any arrangement δV such that PT JV K(φ) ⊆ δV ,

we must have that PT JV K(φ) = δV . Since the propagator only produces implied facts, and

φ is satisfiable, it is clear that φ ∪ δV is also satisfiable.

3.4.1 Combination Method

Let T1 be a Σ1-theory and T2 be a Σ2-theory, and let S = ΣS
1 ∩ ΣS

2 be the set of common sorts.

Further, assume that each Ti is stably-infinite with respect to Si, decidable, and equipped with

an equality propagator PTiJ·K. Additionally, let T2 be equipped with a care function CT2
J·K

operating with respect to the propagator PT2J·K. We are interested in deciding the combination

theory T = T1⊕ T2 over the signature Σ = Σ1 ∪Σ2. We denote the combined theory propagator

with PT J·K.The combination method takes as input a set φ of Σ-literals and consists of the

following steps:

Purify: The output of the purification phase is two new sets of literals, φ1 and φ2 such that

φ1 ∪ φ2 is equisatisfiable (in T) with φ and each literal in φi is a flat Σi-literal, for i = 1, 2.

This step is identical to the first step in the standard Nelson-Oppen combination method.

Arrange: Let V = vars(φ1) ∩ vars(φ2) be the set of all variables shared by φ1 and φ2, and let

δV be an arrangement (chosen non-deterministically) of V . Let the care graph G2 be a

fix-point of the following operator:

G〈G〉 = G ∪ CT2JV K(φ2 ∪PT JV K(φ1 ∪ φ2 ∪ δG)) , (3.1)

where δG is the arrangement over G obtained by restricting δV to the edges in G.

Check: Check the following formulas for satisfiability in T1 and T2 respectively

φ1 ∪PT JV K(φ1 ∪ φ2 ∪ δG2
) , φ2 ∪PT JV K(φ1 ∪ φ2 ∪ δG2

) .

94

If both are satisfiable, output satisfiable, otherwise output unsatisfiable.

Notice that above, since the graph is finite, and the operator G is increasing, a fix-point always

exists. Moreover, it is in our interest to choose a minimal such fix-point, which we can obtain by

doing a fix-point iteration starting from G0 = 〈V,∅〉 (G preserves the property of being a care

graph). Another important observation is that for any fix-point G2 (with respect to the chosen

value of δV) of the operator G above, we must have that the care function application in (3.1)

returns an empty graph. This follows from the fact that G2 is a fix-point and the observation

that the propagator must return all the equalities and dis-equalities from δG, by definition, and

the care function then must ignore them, also by definition.

Example 3.6. Consider the case of combining two theories T1 and T2 equipped with trivial

care functions and propagators PTiJV K that simply return those input literals that are either

equalities or dis-equalities over variables in V . Assume that φ1 and φ2 are the outputs of

the purification phase, and let V be the set of variables shared by φ1 and φ2. Let δV be

the arrangement of V chosen in the Arrange phase, and let G2 be the fix-point graph.

Since CT2J·K is a trivial care function, the arrangement δG2 over G2 must be equivalent to

δV . Then, since the equality propagators simply keep the input equalities and dis-equalities

over V , and all relationships between variables in V are determined by δG2
, the combined

propagator will simply return δV and we will thus check φ1∪ δV and φ2∪ δV for satisfiability

in the Check phase. This shows that our method can effectively simulate the standard

Nelson-Oppen combination method.

We now show the correctness of the method.

Theorem 3.14. Let Ti be a Σi-theory, stably-infinite with respect to the set of sorts Si, and

equipped with equality propagator PTiJ·K, for i = 1, 2. Additionally, let T2 be equipped with a care

function CT2
J·K operating with respect to PT2

J·K. Let Σ = Σ1 ∪Σ2, T = T1⊕T2 and let φ be a set

of flat Σ-literals, which can be partitioned into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals,

with V = vars(φ1) ∩ vars(φ2). If ΣS
1 ∩ ΣS

2 = S1 ∩ S2, then the following are equivalent:

95

1. φ is T -satisfiable;

2. there exists a care graph G2 and an arrangement δG2
over G2 such that G2 is a fix-point

solution of (3.1), and such that the following sets are T1- and T2-satisfiable respectively:

φ1 ∪PT JV K(φ1 ∪ φ2 ∪ δG2
) , φ2 ∪PT JV K(φ1 ∪ φ2 ∪ δG2

) .

Moreover, T is stably-infinite with respect to S1 ∪ S2.

Proof. (1) ⇒ (2) : Suppose φ = φ1 ∪ φ2 is T -satisfiable in a T -interpretation A. Let δV be the

arrangement of V satisfied by A, and let G2 be the trivial care graph over V . It is easy to see that

G2 is a fix-point solution of (3.1) (with respect to arrangement δV), and that δG2
⊆ δV . Then,

because A satisfies φ1, φ2, and δV , and the propagator only adds formulas that are entailed, it

is clear that A satisfies both sets of formulas, which proves one direction.

(2) ⇐ (1) : Assume that there is a T1-interpretation A1 and a T2-interpretation A2 (and

assume wlog that both interpret all the variables in V) such that

A1 �T1 φ1 ∪PT JV K(φ1 ∪ φ2 ∪ δG2) ,

A2 �T2 φ2 ∪PT JV K(φ1 ∪ φ2 ∪ δG2) .

Let δV be the arrangement of V satisfied by A1, so

δG2 ⊆ PT2JV K(φ2 ∪ δG2) ⊆ PT JV K(φ1 ∪ φ2 ∪ δG2) ⊆ δV .

Because G2 is a fix-point, we know that CT2JV K(φ2 ∪ PT JV K(φ1 ∪ φ2 ∪ δG2)) = 〈V,∅〉. We

then know, by property 3 of the care function, that there is a T2-interpretation B2 such that

B2 �T2
φ2 ∪ δV . Since δV is an arrangement of the shared variables and we also have that

A1 �T1 φ1∪δV , we can now appeal to the correctness of the standard Nelson-Oppen combination

method (Theorem 3.5) to obtain a T -interpretation C that satisfies φ1 ∪ φ2 = φ. The proof that

the combined theory is stably-infinite can be found in Appendix B.

3.4.2 Extension to Polite Combination

The method described in Section 3.4 relies on the correctness argument for the standard Nelson-

Oppen method, meaning that the theories involved should be stably-infinite. We now show that

96

the method can easily be adapted to combination of polite theories. Assuming that the theory

T2 is polite with respect to a set of sorts S2 with ΣS
1 ∩ ΣS

2 ⊆ S2, and is equipped with a witness

function witness2. We modify the combination method of Section 3.4.1 as follows:

1. In the Arrange and Check phases, instead of using φ2, we use the formula produced by

the witness function, i.e. φ′2 = witness2(φ2).

2. We define V = varsS(φ′2) instead of V = vars(φ1) ∩ vars(φ2).

Theorem 3.15. Let Ti be a Σi-theory polite with respect to the set of sorts Si, and equipped

with equality propagator PTiJ·K, for i = 1, 2. Additionally, let T2 be equipped with a care function

CT2
J·K operating with respect to PT2

J·K. Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2 and let φ be a set of flat

Σ-literals, which can be partitioned into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals. Let

φ′2 = witnessT2
(φ2) and V = varsS(φ′2). If ΣS

1 ∩ ΣS
2 ⊆ S2, then following are equivalent

1. φ is T -satisfiable;

2. there exists a care-graph G2 and arrangement δG2
, fix-point solutions of (3.1), such that

the following sets are T1- and T2-satisfiable respectively

φ1 ∪PT JV K(φ1 ∪ φ′2 ∪ δG2
) , φ′2 ∪PT JV K(φ1 ∪ φ′2 ∪ δG2

) .

Moreover, T is polite with respect to S1 ∪ (S2 \ ΣS
1).

Proof. The proof is identical to the one given in Theorem 3.14 for the case of stably-infinite

theories, except that in the last step, instead of relying on the correctness of the standard

Nelson-Oppen method, we rely on the correctness of the method for combination of polite theories

(Theorem 3.1). The proof that the combined theory is polite can be found in Appendix B.

3.5 Theory of Uninterpreted Functions

The theory of uninterpreted functions, over a signature Σeuf, is the theory Teuf = (Σeuf,A),

where A is simply the class of all Σeuf-structures. Conjunctions of literals in this theory can be

decided for satisfiability in polynomial time by congruence closure algorithms (e.g. [83, 38]). We

97

make use of insights from these algorithms in defining both the equality propagator and the care

function. For simplicity, we assume Σeuf contains no predicate symbols, but the extension to the

case with predicate symbols is straightforward.

3.5.1 Equality Propagator

Let φ be a set of flat literals and V a set of variables. We write E(φ) to denote the smallest

equivalence relation over the terms occurring in φ containing {(x, t) | x = t ∈ φ}. We also

write Ec(φ) for the smallest congruence relation6 over terms in φ containing the same base set

{(x, t) | x = t ∈ φ}. We define a dis-equality (modulo congruence) relation Nc(φ) as the smallest

relation satisfying

(x, x′) ∈ Ec(φ) and (y, y′) ∈ Ec(φ) and x′ 6= y′ ∈ φ =⇒ (x, y) ∈ Nc(φ) .

Now, we define the equality propagator as

PeufJV K(φ) = { x = y | x, y ∈ V, (x, y) ∈ Ec(φ) }

∪ { x 6= y | x, y ∈ V, (x, y) ∈ Nc(φ) } .

It is easy to see that PeufJ·K is indeed an equality propagator. Moreover, it can easily be

implemented as part of a decision procedure based on congruence closure.

Example 3.7. Given the set of flat literals φ = { x = z, y = f(a), z 6= f(a) }, the equality

propagator would return

PeufJx, yK(φ) = { x = x, y = y, x 6= y, y 6= x } .

In practice, of course, an implementation of such a propagator does not need to bother

with the propagation of trivial equalities, such as x = x, or symmetric versions of the same

(dis-)equality.

6In this context, a congruence relation is an equivalence relation that also satisfies the congruence prop-

erty: if f(x1, . . . , xn) and f(y1, . . . , yn) are terms in φ, and if for each 1 ≤ i ≤ n, (xi, yi) ∈ Ec(φ), then

(f(x1, . . . , xn), f(y1, . . . , yn)) ∈ Ec(φ).

98

3.5.2 Care Function

We will define the care function based on the observation that, during construction of the con-

gruence closure, we only care about equalities between pairs of variables that occur as (or are

implied to be equal to) an argument of the same function symbol, in the same position. Again,

let V be a set of variables and let φ be a set of flat literals. Assume also that φ only contains

function symbols from F = {f1, f2, . . . , fn} ⊆ ΣF
euf.

Each function symbol f ∈ F of arity σ1 × σ2 × · · · × σk 7→ σ will contribute to the care

function with it’s own set of pairs that are important. Let therefore Ef be a set containing pairs

of variables from V that could trigger an application of congruence over the function f . More

precisely, a pair of shared variables (x, y) from V is in the set Ef iff:

1. relationship between x and y is not yet known, i.e. (x, y) 6∈ Ec(φ) ∪Nc(φ);

2. there exist terms t1 = f(x1, . . . , xi, . . . , xk) and t2 = f(y1, . . . , yi, . . . , yk) in φ that are not

know to be equal, i.e. (t1, t2) 6∈ Ec(φ), and

(a) for some 1 ≤ i ≤ k, (x, xi) ∈ Ec(φ) and (y, yi) ∈ Ec(φ);

(b) for 1 ≤ j ≤ k, variables xj and yj are not known to be disequal, i.e. (xj , yj) 6∈ Nc(φ).

Having a set Ef for each function symbol f from the formula φ, we can now define E =⋃
f∈F Ef , and define the care function as CeufJV K(φ) = 〈V,E〉.

Example 3.8. Consider the following sets of literals

φ1 = { f(x1) 6= f(y1), y1 = x2 } ,

φ2 = { z1 = f(x1), z2 = f(y1), g(z1, x2) 6= g(z2, y2) } ,

φ3 = { y1 = f(x1), y2 = f(x2), z1 = g(x1), z2 = g(x2), h(y1) 6= h(z1) } .

and corresponding sets of shared variables

V1 = {x1, x2} , V2 = {x1, x2, y1, y2} , V3 = {x1, x2, y2, z2} .

99

Each of the individual formulas φ1, φ2, and φ3 are satisfiable in Teuf. Let us examine each

of them in turn, where for the sake of brevity, during the computation, we only report the

non-reflexive, non-symmetric versions of the propagated equalities and relations, and skip

the clearly irrelevant ones.

The congruence relations corresponding to the formula φ1 are the following

Ec(φ1) = { (x2, y1) } , Nc(φ1) = { (f(x1), f(y1)) } .

Note that, since y1 is not a shared variable (y1 6∈ V1), the Teuf propagator will return

PeufJV1K(φ1) = ∅. Nevertheless, the variable y1 does occur as an argument of f and since

x2 is a shared variable with (y1, x2) ∈ Ec(φ1), we do consider x2 important as it is an alias

for y1. We now have two terms f(x1) and f(y1) that are not congruent in Ec(φ1) and, to

make sure that we can ensure satisfiability, we need to know the relation between x1 and x2.

By definition, the care function therefore returns the care graph G1 = 〈V1, {(x1, x2)}〉.

Moving on to φ2, let’s assume that, in addition to φ2, we are also considering the integer

arithmetic formula φlia2 = {x1 ≤ y1, x1 ≥ y1, x2 ≤ y2}, thus checking φ2 ∧ φlia2 for satisfia-

bility in the combined theory T = Teuf⊕Tlia. The congruence relations for φ2 alone are the

following

Ec(φ2) = { (z1, f(x1)), (z2, f(y1)) } , Nc(φ2) = { (g(z1, x2), g(z2, y2)) } .

Again, from φ2 alone we can not conclude any relationship between the shared variables so,

at this point, the propagator will return PeufJV2K(φ2) = ∅. But, since we are combining two

theories, we will compute the combined propagator by exchanging the propagated equalities

and dis-equalities. The propagator for the theory of integer arithmetic might be sophisticated

enough to propagate PliaJV2K(φlia2) = {x1 = y1}. If so, this new equality is appended to

φ2, obtaining φ1
2 = φ2 ∪{x1 = y1} and processed further. With the new information, we can

obtain the stronger equivalence relations

Ec(φ1
2) = { (z1, f(x1)), (z2, f(y1)), (x1, y1), (f(x1), f(y1)), (z1, z2) } ,

Nc(φ1
2) = { (g(z1, x2), g(z2, y2)) } .

100

The stronger equivalence relations then influence the Teuf propagator to return

PeufJV2K(φ1
2) = {x1 = y1} and, in fact, this is the final result of the combined theory

propagator PT JV2K(φlia2) = {x1 = y1}.

We can now proceed with computation of the care graph. In the set of shared variables,

the pairs (x1, y1) and (x2, y2) appear as arguments of function terms that could become

equal, at the same position. But, we already know the relationship between x1 and y1, so

the only pair that we are interested is the pair (x2, y2), i.e. the care graph we compute

is G2 = 〈V2, {(x2, y2)}〉. If we now choose the arrangement δG2 = {x2 6= y2}, the pair

〈G2, δG2
〉 will in fact be a fix-point solution to (3.1), and we check the following formulas

for satisfiability

Teuf : φ2 ∧ x1 = y1 ∧ x2 6= y2

Tlia : φlia2 ∧ x1 = y1 ∧ x2 6= y2

Both of these formulas are satisfiable, and we can conclude that the original formula φ2∧φlia2

is satisfiable in the combined theory.

Finally, let’s consider the formula φ3 and its Tlia counterpart φlia3 = {x1 +x2 +y2 + z2 ≤

1}. The equivalence relations corresponding to φ3 are

Ec(φ3) = { (y1, f(x1)), (y2, f(x2)), (z1, g(x1)), (z2, g(x2)) } ,

Nc(φ3) = { (h(y1), h(z1)) } .

In this case, none of the individual theory propagators provide us with any additional infor-

mation about the shared variables, so the combined propagator returns PT JV3K(φ3∧φlia3) =

∅. We proceed to compute the care graph by noting that the only pair of shared vari-

ables under the same function symbol are x1 and x2, and so the care graph we compute

is G1
3 = 〈V3, {(x1, x2)}〉. We can now choose the arrangement δG1

3
= {x1 = x2}. As

this pair is still not a fix-point of (3.1), we continue with the computation, by considering

φ1
3 = φ3 ∪ {x1 = x2}.

101

With the new information, the stronger equivalence relations are

Ec(φ1
3) = Ec(φ3) ∪ { (y1, y2), (z1, z2), (f(x1), f(x2)), (g(x1), g(x2)) } ,

Nc(φ1
3) = { (h(y1), h(z1)) } .

We are now in a similar situation as when considering φ1. The variables y1 and z1 are not

shared, but under the equivalence relation Ec(φ1
3) are in fact aliases for the shared variables

y2 and z2, respectively. Since x1 and z1 appear as arguments of h in the formula, we now care

about the pair (y2, z2), so we add it to the care graph to obtain G2
3 = 〈V3, {(x1, x2), (y2, z2)}〉.

We can now choose that y2 and z2 are different obtaining the arrangement δG2
3

= 〈V3, {x1 =

x2, y2 6= z2}〉. This pair is a fix-point of (3.1), so we check the following formulas for

satisfiability in the individual theories

Teuf : φ3 ∧ x1 = x2 ∧ y2 6= z2

Tlia : φlia3 ∧ x1 = x2 ∧ y2 6= z2

With both of the formulas satisfiable, we conclude that φ3∧φlia3 is satisfiable in the combined

theory T .

We prove correctness of the care function for CeufJ·K by relying on the following well-known

proposition.

Proposition 3.2. A set φ of flat literals is Teuf-satisfiable if and only if, for each dis-equality

x 6= y ∈ φ, we have that (x, y) 6∈ Ec(φ).

Theorem 3.16. Let Teuf be the theory of uninterpreted functions with equality over the signature

Σeuf. CeufJ·K is a care function for Teuf with respect to the equality propagator PeufJ·K.

Proof. Proving the first two properties of the care function is an easy exercise as they hold

directly by construction. To show the third property let φ be a satisfiable set of flat literals, V

a set of variables, and G = CeufJV K(φ) = 〈V,∅〉. Suppose that, as required, we are given an

arrangement δV , corresponding to an equivalence relation EV , with PeufJV K(φ) ⊆ δV . We must

102

show that any such arrangement does not affect the satisfiability of φ, i.e. that φ ∧ δV is also

Teuf-satisfiable. We know, by Proposition 3.2 above, that if x 6= y ∈ φ, then (x, y) 6∈ Ec(φ). In

order to prove the theorem it suffices to show that

if x 6= y ∈ φ ∪ δV then (x, y) 6∈ Ec(φ ∪ δV) .

First, it is clear that, since δV is compatible with the propagated equalities from φ, we must

have that

if v, w ∈ V and (v, w) ∈ Ec(φ) then (v, w) ∈ EV . (3.2)

We now show that that even a stronger property holds, namely that

if v, w ∈ V and (v, w) ∈ E(Ec(φ) ∪ EV) then (v, w) ∈ EV . (3.3)

Let’s assume the opposite, that v, w ∈ V and (v, w) ∈ E(Ec(φ) ∪EV) but (v, w) 6∈ EV . We know

by (3.2) that it then must be that (v, w) 6∈ Ec(φ). Therefore, this new equivalence must have

resulted from some transitive chain from v to w that uses pairs from both Ec(φ) and EV . Let

(t0, t1), (t1, t2), . . . , (tn−1, tn) be the smallest such chain (with v = t0 and w = tn). Let (ti, ti+1)

be the first pair such that ti ∈ V but ti+1 6∈ V . Such a pair must exist since, by (3.2), every

pair in Ec(φ) ∩ (V × V) is also in EV , so that if tk ∈ V for all k, we would have (t0, tn) ∈ EV .

Then, let (tj , tj+1) be first pair such that j > i and tj 6∈ V and tj+1 ∈ V (there must be such

a pair since tn ∈ V). Notice that every pair from (ti, ti+1) to (tj , tj+1) must be in Ec(φ) since

each contains a term not in V . But then (ti, tj+1) ∈ Ec(φ) which contradicts the assumption that

(t0, t1), (t1, t2), . . . , (tn−1, tn) is the smallest chain from t0 to tn. This establishes (3.3).

Additionally, the following property follows

if (s, t) ∈ E(Ec(φ) ∪ EV) then (s, t) 6∈ Nc(φ) . (3.4)

Suppose (s, t) ∈ E(Ec(φ) ∪ EV) and (s, t) ∈ Nc(φ). Because φ is satisfiable, we know that

(s, t) 6∈ Ec(φ). So, as above, there must be some transitive chain from s to t using pairs from

both Ec(φ) and EV . Let v be the first term in this chain such that v ∈ V and w the last term

in the chain such that w ∈ V . By definition, we must have (v, w) ∈ Nc(φ). It follows that

v 6= w ∈ δV and thus (v, w) 6∈ EV . But by (3.3), it follows that (v, w) ∈ EV . This establishes

(3.4).

103

Consider now to following property

Ec(φ ∪ δV) = E(Ec(φ) ∪ EV) . (3.5)

To see that it holds, note first that by basic properties of equivalence and congruence closures

we have that

Ec(φ ∪ δV) = Ec(Ec(φ) ∪ E(δV)) = Ec(Ec(φ) ∪ EV) .

To see that Ec(Ec(φ)∪EV) = E(Ec(φ)∪EV), suppose that this is not the case. Then there must

exist a pair of function applications t1 = f(x1, x2, . . . xn) and t2 = f(y1, y2, . . . yn), appearing

in φ, such that (t1, t2) 6∈ Ec(φ) but for each 1 ≤ j ≤ n, (xj , yj) ∈ E(Ec(φ) ∪ EV). From this it

follows by (3.4) that (xj , yj) 6∈ Nc(φ). Therefore, terms t1 and t2 are candidate terms of our care

function.

Since Ec(φ) is closed under congruence, there must be some i such that (xi, yi) 6∈ Ec(φ) and

(xi, yi) ∈ E(Ec(φ) ∪ EV). But then we must have a chain of equalities connecting xi to yi, such

that at least one equality comes from EV . This chain then has to contain at least two variables

from V . Let x be the first variable from V , and y the last variable from V , in this equality chain.

Since the chains from xi to x, and yi to y do not contain any variables from V , all these equalities

must come from Ec(φ), so it must be that (xi, x) ∈ Ec(φ) and (yi, y) ∈ Ec(φ). We can conclude

that (x, y) 6∈ Ec(φ) since otherwise we could deduce that (xi, yi) ∈ Ec(φ). Additionally, it must

be that (x, y) 6∈ Nc(φ), as otherwise we would have x 6= y ∈ δV and thus (x, y) 6∈ EV , but we

know from (3.3) that (x, y) ∈ EV .

But now we can see that x and y satisfy all the requirements necessary to ensure that the

edge (x, y) must be in the care graph G, contradicting the fact that it should be empty, which

establishes (3.5).

Finally, we return to the main proof and show that if x 6= y ∈ φ∪δV , then (x, y) 6∈ Ec(φ∪δV).

We consider two cases.

• First, suppose x 6= y ∈ δV (and thus x, y ∈ V). Clearly, we cannot also have x = y ∈ δV ,

so (x, y) 6∈ EV . It follows by (3.3) that (x, y) 6∈ E(Ec(φ) ∪ EV), and thus, by (3.5), (x, y) 6∈

Ec(φ ∪ δV).

104

• On the other hand, suppose that x 6= y ∈ φ. This means that (x, y) ∈ Nc(φ). By (3.4), it

follows that (x, y) 6∈ E(Ec(φ) ∪ EV), and thus, by (3.5), (x, y) 6∈ Ec(φ ∪ δV).

3.6 Theory of Arrays

In this section we show how to construct, and prove correct, a care function for the theory of

arrays that we defined in Example 3.2 of Section 3.3. Before presenting the equality propagator

and care function, it will be helpful to present a simple rule-based decision procedure for Tarr.

The procedure we present is based on [36], with the main difference that in our procedure, we

exclude literals containing write terms from the Teuf-satisfiability check as they are not needed

and this allows us to have a simpler care function.

3.6.1 A Decision Procedure

For a set φ of flat Tarr-literals, we define α(φ) to be the subset of φ that does not contain literals

of the form a = write(b, i, v). We also define Ea(Γ) as Ec(α(Γ)) and, as usual, the corresponding

dis-equality relation Na(Γ) as the smallest relation satisfying:

if (w,w′) ∈ Ea(Γ) and (z, z′) ∈ Ea(Γ) and w′ 6= z′ ∈ Γ then (w, z) ∈ Na(Γ) .

As a matter of notational convenience in this section we write x ≈Γ
a for (x, y) ∈ Ea(Γ) and x 6=Γ

a y

for (x, y) ∈ Na(Γ).

The following simple lemma is a straightforward consequence of the fact that adding additional

information can only increase the set of consequences of a set of formulas.

Lemma 3.1. Suppose φ and Γ are sets of flat Tarr-literals with φ ⊆ Γ. Then:

• s ≈φa t =⇒ s ≈Γ
a t , and

• s 6=φ
a t =⇒ s 6=Γ

a t .

We now present the inference rules of the decision procedure for Tarr. For a set of literals

Γ, we write Γ[l1, . . . , ln] to denote that literals l1, . . . , ln appear in Γ. For every pair (a, b) of

105

variables from varsarray(Γ), we let ka,b be a distinguished fresh variable of sort index. Let Darr be

the following set of inference rules.

RIntro1
Γ[a = write(b, i, v)]

Γ, v = read(a, i)
if v 6≈Γ

a read(a, i)

RIntro2
Γ[a = write(b, i, v), x = read(c, j)]

Γ, i = j Γ, read(a, j) = read(b, j)
if


a ≈Γ

a c or b ≈Γ
a c,

i 6≈Γ
a j, and

read(a, j) 6≈Γ
a read(b, j)

ArrDiseq
Γ[a 6= b]

Γ, read(a, ka,b) 6= read(b, ka,b)
if not read(a, ka,b) 6=Γ

a read(b, ka,b)

Note that although non-flat literals appear in the conclusions of rules RIntro2 and ArrDiseq, we

only use this as a shorthand for the flattened version of these literals. For example, read(a, j) =

read(b, j) is shorthand for x = read(a, j)∧y = read(b, j)∧x = y, where x and y are fresh variables

(there are other possible flattenings, especially if one or more of the terms appears already in Γ,

but any of them will do). We say that a set Γ of literals is Darr-saturated if no rules from Darr

can be applied.

Theorem 3.17. The inference rules of Darr are sound and terminating.

Proof. By sound, we mean that for each rule, the set of literals in the premise is Tarr-satisfiable iff

one of the conclusion sets is Tarr-satisfiable. It is not hard to see that the soundness of the RIntro1

rule follows from axiom (RW1) of Tarr, the soundness of RIntro2 follows from axiom (RW2), and

the soundness of ArrDiseq from axiom (EX).

To see that the rules are terminating, first notice that applying a rule results in a new set

Γ which no longer satisfies the side conditions of the rule just applied, so every application of

a rule along a derivation branch must involve different “trigger” formulas (the ones in square

brackets). Now, no rule introduces array dis-equalities, so it is clear that ArrDiseq can only be

applied a finite number of times. Similarly, no rule introduces a new literal containing write, so

RIntro1 can only be applied a finite number of times. Now, suppose we have a set Γ in which

both the RIntro1 rule and the ArrDiseq rule no longer apply, and consider rule RIntro2 which may

introduce new read terms. The rule cannot, however, introduce new array or index variables, so

106

there are only a finite number of read terms that can be generated. Each application of RIntro2

merges the equivalence classes of either two index terms or two read terms. Since there are a

finite number of both, eventually, no more merges will be possible.

If we apply the decision procedure rules to exhaustion, as shown by the theorem below, we can

resort to equality reasoning provided by the congruence reasoning to check the Tarr-satisfiability

of the original formula. This hints to the possibility of reusing the care function of Teuf in our

construction of the care function for Tarr.

Additionally, we will show that if a formula is Tarr satisfiable, it is satisfiable in a particular

model that allows for unrelated arrays to be interpreted as distinct. To formalize this, we define

the relation Pa(φ) as the smallest equivalence relation that contains all pairs (a, b) of array

variables such that either a = b ∈ φ or a = write(b, i, v) ∈ φ.

Theorem 3.18. Let Γ be a Darr-saturated set of flat Tarr-literals. Then Γ is Tarr-satisfiable if

and only if α(Γ) is Teuf-satisfiable.

Proof. Since read and write are function symbols, with function interpretations, all the structures

of Tarr are included in the structures of Teuf. With this, and the fact that α(Γ) ⊆ Γ, the only-if

direction is trivial.

For the other direction, suppose Γ is a Darr-saturated set of flat Tarr-literals. Let A be a

maximally diverse Teuf model of α(Γ) (for instance, the ≈Γ
a -quotient of the term model) and

note that it has the property that for any two terms s and t from Γ of the same sort, s ≈Γ
a t

iff sA = tA. Also note that since the theory Teuf is stably infinite with respect to the sorts of

elements and indices, we can assume that in A the domains of elem and index are infinite.

We will show that Γ is Tarr-satisfiable by constructing a Tarr interpretation B that satisfies

Γ. We start by defining the domains of B as

Bindex = Aindex ,

Belem = Aelem ,

Barray = { f | f : Bindex 7→ Belem } .

107

We further define the interpretations of function symbols as

readB = λ a : Barray. λ i : Bindex. a(i) ,

writeB = λ a : Barray. λ i : Bindex. λ x : Belem. (λ j : Bindex.if i = j then x else a(j)) .

For all index variables i and elem variables x we keep their original interpretations in A, i.e. we

take iB = iA and xB = xA.

We interpret each array a ∈ varsarray(Γ) as the corresponding function from A, but in a

restricted manner. Let a1, . . . , an be some representatives of the equivalence classes in Pa(Γ) and

let e1, . . . en be distinguished distinct elements of Belem = Aelem (they exist as the domains are

infinite). Then

aB = λ e : Bindex.


xA if x = read(b, i) ∈ Γ and a ≈Γ

a b and iA = e

ek otherwise, where (a, ak) ∈ Pa(Γ)

Intuitively, we interpret the elements according to the corresponding interpretations of the reads,

but we make sure that the default elements are picked different for the different classes in Pa(Γ).

To see that this interpretation is well-defined, suppose that for some variable a, we have both

x = read(b, i) ∈ Γ and y = read(c, j) ∈ Γ, with a ≈Γ
a b ≈Γ

a c and iA = jA = e. Clearly, bA = cA,

but then it must be the case that read(b, i)A = read(c, j)A and so xA = yA.

It is easy to see that the definitions of read and write satisfy the axioms of Tarr. Now, we

proceed to show that B |= Γ. First, note that by definition, equalities and dis-equalities between

variables of sort index or elem are trivially satisfied. Next, consider an equality of the form

x = read(a, i). Since this equality is in Γ, we know by the definition of aB that aB(iB) = xB, so

by the definition of read, such equalities must be satisfied. This shows that for terms t of sort

index or elem, tB = tA and thus if s is a term of the same sort as t, s ≈Γ
a t iff sB = tB. Similarly,

it is not hard to see that since α(Γ) is satisfiable, we must have that if s 6=Γ
a t then sB 6= tB.

Next, consider equalities and dis-equalities between array-variables. For every dis-equality

a 6= b ∈ Γ, we know that (because Γ is saturated), read(a, ka,b) 6=Γ
a read(b, ka,b), and thus

read(a, ka,b)
B 6= read(b, ka,b)

B, from which it is clear that aB 6= bB. To see that equalities a = b

are satisfied, note that we have (a, b) ∈ Pa(Γ) and a ≈Γ
a b, and thus the definitions of aB and bB

will yield the same function.

108

Finally, consider an equality of the form a = write(b, i, v). Let fa = aB and fwrite = write(b, i, v)B.

We will show this directly by showing that for all index-elements ι ∈ Bindex we also have fa(ι) =

fwrite(ι). First, suppose that ι = iB. In this case, it is clear that fwrite(ι) = vB by the definition

of writeB. Also, by the RIntro1 rule (and saturation of Γ), we know that v ≈Γ
a read(a, i) and so

read(a, i)B = vB. Then, by the definition of aB, we must have fa(ι) = vB.

Suppose, on the other hand that ι 6= iB. Note that by the definition of writeB, this implies

that fwrite(ι) = bB(ι). Based on how we defined the interpretations of arrays a and b, we now

consider the following cases:

• Suppose that we have x = read(c, j) ∈ Γ with a ≈Γ
a c and jB = ι. In this case, the definition

of aB ensures that fa(ι) = read(c, j)B. Looking at rule RIntro2, we can see that because Γ

is saturated and iB 6= jB, we must have read(a, j)B = read(b, j)B. But the first is equal to

read(c, j)B by saturation and rule RIntro1, and the second is equal to bB(ι) by the definition

of readB. Thus, fwrite(ι) = fa(ι).

• A similar case is when x = read(c, j) ∈ Γ with b ≈Γ
a c and jB = ι. Here, we have

fwrite(ι) = read(c, j)B by definition, and we can again conclude that read(a, j)B = read(b, j)B

by rule RIntro2. But the first is equal to fa(ι) by the definition of read and the second is

equal to read(c, j)B and thus to fwrite(ι).

• Finally, when neither of the previous cases hold, the definitions of aB and bB ensure that

fa(ι) = aB(ι) = ek = bB(ι) = fwrite(ι). The default interpretations are both equal to the

same ek since from a = write(b, i, v) ∈ Γ we know that (a, b) ∈ Pa(Γ) and thus both arrays

have the same representative ak.

Since B satisfies the axioms and each of the literals in Γ, this shows that Γ is Tarr-satisfiable

and concludes the proof.

In the previous Theorem, we’ve taken particular care to interpret the arrays from different

classes in Pa(Γ) to be different. This flexibility allows us to show the following two results.

Corollary 3.1. A set of flat Tarr-literals φ is Tarr-satisfiable iff the following formula is also

Tarr-satisfiable

φ ∪ { a 6= b | (a, b) 6∈ Pa(φ) } .

109

Proof. If φ is satisfiable, we know from Theorem 3.17 that there is a Darr-saturated set Γ ⊇ φ

that is also satisfiable. Notice that during saturation we do not introduce any equalities among

array variables or write terms, hence Pa(φ) = Pa(Γ). Moreover, in the proof of Theorem 3.18

we’ve constructed an interpretation for such Γ where, for two arrays a and b that belong to

different equivalence classes in Pa(Γ), the default values of the functions corresponding to a and

b are different. Since the read terms from Γ only constrain the interpretations of a and b at finite

number of points, and we’ve chosen the interpretations of index points to be infinite, it must be

that the interpretations of a and b differ in at least one point (in fact infinitely many points).

Therefore this same interpretation also satisfies the set φ ∪ { a 6= b | (a, b) 6∈ Pa(φ) }.

Corollary 3.2. Let φ be a Tarr-satisfiable set of flat Tarr-literals. Then the relation Pa(A) is an

over-approximation of all array equalities that are implied by φ, i.e.

φ �Tarr
a = b =⇒ (a, b) ∈ Pa(φ) .

3.6.2 Equality Propagator

Let φ be a set of flat literals and V a set of variables. Consider the following modified versions

of the RIntro2 rule that are enabled only if one of the branches can be ruled out as unsatisfiable:

RIntro2a
Γ[a = write(b, i, v), x = read(c, j)]

Γ, i = j
if


a ≈Γ

a c or b ≈Γ
a c,

i 6≈Γ
a j, and

read(a, j) 6=Γ
a read(b, j)

RIntro2b
Γ[a = write(b, i, v), x = read(c, j)]

Γ, read(a, j) = read(b, j)
if


a ≈Γ

a c or b ≈Γ
a c,

i 6=Γ
a j, and

read(a, j) 6≈Γ
a read(b, j)

Let D′arr be obtained from Darr by replacing RIntro2 with the above rules. Since these rules

mimic RIntro2 when they are enabled, but are enabled less often, it is clear that D′arr remains

sound and terminating. Let Γ′ be the result of applying D′arr to Γ until no more rules apply (for

the sake of determinism, assume that rules are applied in order of appearance when there is a

110

choice). We say that Γ′ is D′arr-saturated. We define the equality propagator as:

ParrJV K(Γ) = { w = z | w, z ∈ V, (w, z) ∈ Ea(Γ′) }

∪ { w 6= z | w, z ∈ V, (w, z) ∈ Na(Γ′) } .

It is easy to see that ParrJ·K satisfies the requirements for a propagator.

3.6.3 Care Function

Let φ be a set of flat literals and V a set of variables. First, since a simple propagator cannot

compute all equalities between array variables, we will ensure that the relationships between all

pairs of array variables in V have been determined. To do so, we define the set Eφa of pairs of

array variables in V that are not yet known equal or dis-equal. Let Va = varsarray(V). Then,

Eφa = (Va × Va) \ (Ea(φ) ∪Na(φ)) .

Next, since the inference rules can introduce new read terms, we compute the smallest set Rφ

that includes all possible such terms, i.e.,

• if x = read(a, i) ∈ φ or a = write(b, i, v) ∈ φ, then read(a, i) ∈ Rφ,

• if a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, i 6≈φa j, and a ≈φa c or b ≈φa c, then both

read(a, j) ∈ Rφ and read(b, j) ∈ Rφ,

• if a 6= b ∈ φ, then both read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ .

Crucial in the introduction of the above read terms is the set of index variables whose equality

could affect the application of the RIntro2 rule. We capture these variables by defining the set

Eφi as the set of all pairs (i, j) such that:

• i 6≈φa j and not i 6=φ
a j

• ∃ a, b, c, v. a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, and a ≈φa c or b ≈φa c.

Finally, we claim that with the variables in Eφa and Eφi decided, we can essentially use the

same care function as for Teuf, treating the read function symbol as uninterpreted. We therefore

define the third set Eφr to be the set of all pairs (i, j) ∈ V × V of undecided indices (i 6≈φa j and

not i 6=φ
a j) such that

111

• there are terms read(a, i′), read(b, j′) ∈ Rφ with read(a, i′) 6≈φa read(b, j′),

• a and b could be equal and are not known to be disequal, i.e. (a, b) ∈ Pa(φ) and a 6=φ
a b,

• the variables i and j are relevant, i.e. i ≈φa i′ and j ≈φa j′.

It is important to note that, in the definition of Eφr , we use the over-approximation Pa(a, b) of

the entailed equalities over arrays.

With the definitions above, we can define the care function as CarrJV K(φ) = G = 〈V,E〉,

where the set of edges is defined as:

E =


Eφa if Eφa 6= ∅,

Eφi if Eφi 6= ∅, and

Eφr otherwise.

Note that as defined, Eφi may include pairs of index variables, one or more of which are not

in V . Unfortunately, the care function fails if Eφi is not a subset of V × V . We can ensure

that it is either by expanding the set V until it includes all variables in Eφi or doing additional

case-splitting up front on pairs in Eφi , adding formulas to φ, until Eφi ⊆ V × V .

Example 3.9. Consider the following constraints involving arrays and bit-vectors of size m,

where ×m denotes unsigned bit-vector multiplication:

n∧
k=1

(read(ak, ik) = read(ak+1, ik+1) ∧ ik = xk ×m xk+1) . (3.6)

Assume that only the index variables are shared, i.e. V = {i1, . . . , in+1}. In this case, both

Eφa and Eφi will be empty and the only read terms in Rφ will be those appearing in the

formula. Since none of these are reading from equivalent arrays, the empty care graph is a

fix-point for our care function, and we do not need to guess an arrangement.

Note that in the case when V contains array variables, the care graph requires us to split on

all pairs of these variables (i.e. we use the trivial care function over these variables). Fortunately,

112

in practice it appears that index and element variables are typically shared, and only rarely are

array variables shared.

Lemma 3.2. Let φ be a set of flat Tarr-literals, and suppose that CarrJV K(φ) = 〈V,∅〉. If Γ is a

satisfiable set of literals obtained from φ via a sequence of Darr-inferences, and read(a, i) appears

in Γ, then read(a, i) ∈ Rφ.

Proof. The proof is by induction on inference rule applications. For the base case, suppose Γ = φ.

The first rule defining Rφ ensures that read(a, i) ∈ Rφ.

For the inductive case, suppose every term read(a, i) apearing in Γ is in Rφ and let Γ′ be

obtained by applying an inference rule to Γ. Suppose the inference rule is RIntro1. This introduces

a term of the form read(a, i). It also requires that we have an equality a = write(b, i, v) ∈ Γ.

But no rule introduces such equalities, so it must have been in φ originally. Again, the first rule

defining Rφ then ensures that read(a, i) ∈ Rφ.

Next, suppose the inference rule is RIntro2. The right branch of this rule may introduce

read(a, j) and read(b, j). In this case, we know there are equalities a = write(b, i, v) and x =

read(c, j) in Γ with i 6≈Γ
a j, and either a ≈Γ

a c or b ≈Γ
a c. As before, we must have a =

write(b, i, v) ∈ φ, and by the inductive hypothesis, we know that read(c, j) ∈ Rφ. Furthermore,

because Eφa = ∅, we know that all relationships between array variables are already determined

by φ, so either a ≈φa c or b ≈φa c; and we know from Lemma 3.1 that i 6≈φa j. We can then see

that the second rule defining Rφ ensures that read(a, j) and read(b, j) are in Rφ.

Finally, suppose that the inference rule is ArrDiseq. This rule may introduce read(a, ka,b)

and read(b, ka,b). This can only happen if a 6= b ∈ Γ. Since no rules introduce dis-equalities

between array variables, this implies that a 6= b ∈ φ, and so the last rule defining Rφ ensures that

read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ.

Theorem 3.19. Let Tarr be the theory of arrays. CarrJ·K is a care function for Tarr with respect

to the equality propagator ParrJ·K for all sets φ of literals and V of variables such that Eφi ⊆ V ×V .

Proof. Assume that we are given a set φ of flat Σarr-literals and a set V of variables with

Eφi ⊆ V × V . Let CarrJV K(φ) = 〈V,∅〉, and assume that φ is Tarr-satisfiable and δV is a variable

arrangement such that δV ⊇ ParrJV K(φ).

113

Because φ is Tarr-satisfiable, we know from Theorems 3.17 and 3.18 that we can find a Darr-

saturated set Γ ⊇ φ that is Tarr-satisfiable and α(Γ) is Teuf-satisfiable. We define a set δP of

additional disequalities based on Pa(Γ) as

δP = { a 6= b | (a, b) 6∈ Pa(Γ) }

Moreover, from Corollary 3.1 we can conclude that Γ∪δP is Tarr-satisfiable and therefore α(Γ)∪δP

is Teuf-satisfiable. From here we can resort to correctness of the Teuf care function if we can show

the following

CeufJV K(α(Γ) ∪ δP) = 〈V,∅〉 , (3.7)

PeufJV K(α(Γ) ∪ δP) ⊆ δV . (3.8)

If we can show the above two properties, we can then proceed as follows. Using Theorem 3.16

we can show that α(Γ) ∪ δP ∪ δV must be Teuf-satisfiable, and therefore α(Γ) ∪ δV is also Teuf-

satisfiable. But α(Γ) ∪ δV = α(Γ ∪ δV), so α(Γ ∪ δV) is also Teuf-satisfiable. Finally, since Γ is

Darr-saturated, and δV can only add new equalities and disequalities between variables of sort

index or elem, it is clear that Γ ∪ δV must also be Darr-saturated. Therefore, by Theorem 3.18,

Γ ∪ δV is Tarr-satisfiable, from which we can conclude that φ ∪ δV is Tarr-satisfiable, which

concludes the proof.

We start by showing a seemingly weaker property than (3.7), that is, we claim that

PeufJV K(α(Γ)) ⊆ δV . (3.9)

We know from the assumptions of the theorem that ParrJV K(φ) ⊆ δV , so it suffices to show

that PeufJV K(α(Γ)) = ParrJV K(φ). Consider the set Γ′ taken as the D′arr-saturated set obtained

starting from φ. By definition of the propagator ParrJ·K it follows directly that ParrJV K(φ) =

PeufJV K(α(Γ′)). Thus, is enough to show that PeufJV K(α(Γ)) = PeufJV K(α(Γ′)). In fact, we

can show that Γ = Γ′. Suppose not. The only way this could happen is if there is some Darr-

derivation starting from φ in which rule RIntro2 applies but rules RIntro2a and RIntro2b do not.

Let Γ′′ be the first set in the Darr-derivation from φ to Γ in which this is the case. In order for

the rule to be enabled, we must have a = write(b, i, v), x = read(c, j) ∈ Γ′′. As we have noted

before, derivations do not introduce equalities containing applications of write, so we must have

114

a = write(b, i, v) ∈ φ. We also know by Lemma 3.2 that read(c, j) ∈ Rφ. We also have a ≈Γ′′

a c or

b ≈Γ′′

a c, so it follows from the fact that Eφa = ∅ that a ≈φa c or b ≈φa c. But now, since Eφi = ∅,

clearly we must have i ≈φa j or i 6=φ
a j. In the first case, we know that i ≈Γ′′

a j, so rule RIntro2 is

not applicable, contradicting our assumption. In the second case, we know that i 6=Γ′′

a j which

means that RIntro2b is applicable, which also contradicts our assumption.

We have shown that (3.9) holds. Now consider the set PeufJV K(α(Γ) ∪ δP). First, since

Eφa = 0, we know that for all pairs (a, b) of array variables in V we already have either a = b ∈ φ

or a 6= b ∈ φ, and therefore the Teuf propagator PeufJ·K can not possibly learn any new equality

information over array variables in V from the additional disequalities in δP . Moreover, the Teuf

propagator also can not learn any new equality information over index and elem variables once

we add the δP set of array dis-equalities. Therefore, we conclude that PeufJV K(α(Γ) ∪ δP) =

PeufJV K(α(Γ)) ⊆ δV which directly shows (3.8).

Now, let G = 〈V,E〉 = CeufJV K(α(Γ) ∪ δP) be the Teuf care graph based on α(Γ) ∪ δP . As

(3.7) states, we claim that E = ∅. First note that because Eφa = ∅, we know that for array

variables a, b ∈ varsarray(V), either a ≈φa b or a 6=φ
a b, so it is impossible to have (a, b) ∈ E. Next,

notice that since variables of sort elem cannot appear as arguments to functions in α(Γ), there

are no elem pairs (x, y) ∈ E. Finally, suppose we have a pair of index variables (i, j) such that

(i, j) ∈ E. By the definition of CeufJ·K, we know that there exist a, b, i′, j′ such that

1. read(a, i′) and read(b, j′) appear in α(Γ) ∪ δP ,

2. (read(a, i′), read(b, j′)) 6∈ Ec(α(Γ) ∪ δP),

3. (a, b) 6∈ Nc(α(Γ) ∪ δP), and

4. (i, i′) ∈ Ec(α(Γ) ∪ δP) and (j, j′) ∈ Ec(α(Γ) ∪ δP).

Using Lemma 3.2 we can conclude from property 1 that, since the terms must appear in α(Γ),

and therefore in Γ, we must have read(a, i′) ∈ Rφ and read(b, j′) ∈ Rφ. Also, since Ec(α(Γ)) ⊆

Ec(α(Γ) ∪ δP), from property 2, we know that read(a, i′) 6≈Γ
a read(b, j′). Then, since φ ⊆ Γ we

can use Lemma 3.1 to conclude that read(a, i′) 6≈φa read(b, j′).

We next consider the implications of property 4. Notice that the only equalities between index

variables that could have been introduced during the derivation from φ to Γ are those introduced

115

by rule RIntro2. But if this rule is enabled and could introduce i = j, then (i, j) ∈ Eφi . But we

know that Eφi = ∅. It follows that no equalities between index variables are introduced in the

derivation. So, if i ≈Γ
a i
′, then i ≈φa i′. Similarly, if j ≈Γ

a j
′, then j ≈φa j′. But, from property 4 we

know that (i, i′) ∈ Ec(α(Γ) ∪ δP). Again, since the disequalities in δP do not influence equalities

over index terms in the congruence relation, we can conclude that (i, i′) ∈ Ec(α(Γ)) and therefore

i ≈Γ
a i
′, and similarity j ≈Γ

a j
′. We’ve therefore established that i ≈φa i′ and j ≈φ j′.

Finally, lets examine the following two cases on the relation between the arrays a and b:

• If a 6=φ
a b, which is equivalent to (a, b) ∈ Nc(α(φ)), by monotonicity of the disequality

relation we have that (a, b) ∈ Nc(α(φ)) ⊆ Nc(α(Γ)) ⊆ Nc(α(Γ) ∪ δP).

• If we have that (a, b) 6∈ Pa(φ) then, since saturation does not add any equalities among

array variables or write terms, we have that Pa(Γ) = Pa(φ). By definition of δP we therefore

have that (a, b) ∈ Nc(δP) ⊆ Nc(α(Γ) ∪ δP)

Since property 4 ensures the opposite of the conclusions of the two cases above, i.e. (a, b) 6∈

Nc(α(Γ) ∪ δP) we can now conclude that it is the case that (a, b) ∈ Pa(φ) and not a 6=φ
a b.

From the underlined properties above we can now see that all conditions are satisfied to ensure

that (i, j) ∈ Eφr . But, this is impossible by assumption of the Tarr care graph being empty. Hence

we conclude that the Teuf care graph is also empty, proving (3.8).

3.7 Experimental Evaluation

We implemented the new method in the cvc3 solver [7], and in the discussion below, we denote

the new implementation as cvc3+c. We focused our attention on the combination of the theory

of arrays and the theory of fixed-size bit-vectors (QF AUFBV). This seemed like a good place to

start because there are many benchmarks which generate a significant number of shared variables,

and additional splits on shared bit-vector variables can be quite expensive. This allowed us to

truly examine the merits of the new combination method. In order to evaluate our method

against the current state-of-the-art, we compared to boolector [18], yices [41], cvc3, and mathsat

[19], the top solvers in the QF AUFBV category from the 2009 SMT-COMP competition (in

116

Table 3.1: Experimental results of the evaluation. For each solver, the first column reports the

total time (in seconds) used by that solver on the problem instances it solved. The second column

reports the number of instances solved. The best results for each benchmark are in bold.

boolector yices mathsat z3 cvc3 cvc3+c

benchmark set time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved

crafted (40) 2100.13 40 6253.32 34 468.73 30 112.88 40 388.29 9 14.22 40

matrix (11) 1208.16 10 683.84 6 474.89 4 927.12 11 831.29 11 45.08 11

unconstr (10) 3.00 10 0 706.02 3 54.60 2 185.00 5 340.27 8

copy (19) 11.76 19 1.39 19 1103.13 19 4.79 19 432.72 17 44.75 19

sort (6) 691.06 6 557.23 4 82.21 4 248.94 3 44.89 6 44.87 6

delete (29) 3407.68 18 1170.93 10 2626.20 14 1504.46 10 1766.91 17 1302.32 17

member (24) 2807.78 24 185.54 24 217.35 24 112.23 24 355.41 24 320.80 24

10229.57 127 8852.25 97 5678.53 98 2965.02 109 4004.51 89 2112.31 125

order).7 Additionally, we included the z3 solver [35] so as to compare to the model-based theory

combination method [34]. All tests were conducted on a dedicated Intel Pentium E2220 2.4 GHz

processor with 4GB of memory. Individual runs were limited to 15 minutes.

We crafted a set of new benchmarks based on Example 3.9 from Section 3.6, taking n =

10, . . . , 100, with increments of 10, and m = 32, . . . , 128, with increments of 32. We also included

a selection of problems from the QF AUFBV division of the SMT-LIB library.8 Since most of

the benchmarks in the library come from model-checking of software and use a flat memory

model, they mostly operate over a single array representing the heap. Our method is essentially

equivalent to the standard Nelson-Oppen approach for such benchmarks, so we selected only the

benchmarks that involved constraints over at least two arrays. We anticipate that such problems

will become increasingly important as static-analysis tools become more precise and are able to

infer separation of the heap (in the style of Burstall, e.g. [78]). All the benchmarks and the cvc3

binaries used in the experiments are available from the authors’ website.9

7http://www.smtcomp.org/2009/
8http://combination.cs.uiowa.edu/smtlib/
9http://cs.nyu.edu/~dejan/sharing-is-caring/

117

http://www.smtcomp.org/2009/
http://combination.cs.uiowa.edu/smtlib/
http://cs.nyu.edu/~dejan/sharing-is-caring/

The combined results of our experiments are presented in Table 3.1, with columns reporting

the total time (in seconds) that a solver used on the problem instances it solved (not including

time spent on problem instances it was unable to solve), and the number of solved instances.

Compared to cvc3, the new implementation cvc3+c performs uniformly better. On the first four

classes of problems, cvc3+c greatly outperforms cvc3. On the last three classes of problems, the

difference is less significant. After examining the benchmarks, we concluded that the multitude

of arrays in these examples is artificial – the many array variables are just used for temporary

storage of sequential updates on the same starting array – so there is not a great capacity for

improvement using the care function that we described. A scatter-plot comparison of cvc3 vs

cvc3+c is shown in Figure 3.1(a). Because the only difference between the two implementations

is the inclusion of the method described in this paper, this graph best illustrates the performance

impact this optimization can have.

When compared to the other solvers, we find that whereas cvc3 is not particularly competitive,

cvc3+c is very competitive and in fact, for several sets of benchmarks, performs better than all

of the others. This again emphasizes the strength of our results and suggests that combination

methods can be of great importance for performance and scalability of modern solvers. Overall,

on this set of benchmarks, boolector solves the most (solving 2 more than cvc3+c). However,

cvc3+c is significantly faster on the benchmarks it solves. Figure 3.1(b) shows a scatter-plot

comparison of cvc3+c against boolector.

118

(a) (b)

Figure 3.1: Comparison of cvc3, cvc3+c and boolector. Both axes use a logarithmic scale and

each point represents the time needed to solve an individual problem.

119

Conclusion

The contributions of this thesis are threefold: we we proposed a new approach for solving linear

integer problems, a new procedure for solving non-linear real problems and a new method for

combination of decision procedure.

The proposed integer solver has all key ingredients that made cdcl-based sat solver success-

ful. Our solver justifies propagation steps using tightly-propagating inequalities that guarantee

that any conflict detected by the search procedure can be resolved using only inequalities. We

presented an approach to integrate Cooper’s quantifier elimination algorithm in a model guided

search procedure. Our first prototype is already producing encouraging results. We see many

possible improvements and extensions to the integer procedure. A solver for Mixed Integer-Real

problems is the first natural extension. One basic idea would be to make the real variables bigger

than the integer variables in the variable order ≺, and use Fourier-Moztkin resolution (instead

of Cooper’s procedure) to explain conflicts on rational variables. Integrating our solver with a

Simplex-based procedure is another promising possibility. The idea is to use Simplex to check

whether the current state or the search is feasible in the rational numbers or not.

The new decision procedure for non-linear problems also performs a backtracking search for

a model, where the backtracking is powered by a novel conflict resolution procedure. Our first

prototype was consistently one of the best solvers for each problem set we tried, and, overall

manages to solve the most problems, in much faster time. We expect even better results after

several missing optimizations in the core algorithms are implemented. For example, our imple-

mentation does yet support full factorization of multivariate polynomials, or algebraic number

computations using extension fields. We see many possible improvements and extensions to our

procedure. We plan to design and experiment with different explain procedures. One possible idea

is to try explain procedures that are more efficient, but do not guarantee termination. Heuristics

for reordering variables and selecting a value from the feasible set should also be tried.

The new combination framework can be seen as a reformulation of the classic Nelson-Oppen

method for combining theories. The most notable novel feature of the new method is the ability

to leverage the structure of the individual problems in order to reduce the complexity of finding

120

a common arrangement over the interface variables. We do this by defining theory-specific care

functions that determine the variable pairs that are relevant in a specific problem. We proved

the method correct, and presented care functions for the theories of uninterpreted functions and

arrays. The new method is asymmetric as only one of the theories takes charge of creating the

arrangement graph over the interface variables. Since many theories we combine in practice

are parametrized by other theories, the non-symmetric approach has an intuitive appeal. We

draw intuition for the care functions and correctness proofs directly from the decision procedures

for specific theories, leaving room for new care functions backed by better decision algorithms.

Another benefit of the presented method is that it is orthogonal to the previous research on com-

binations of theories. For example, it would be easy to combine our method with a model-based

combination approach–instead of propagating all equalities between shared variables implied by

the model, one could restrict propagation to only the equalities that correspond to edges in the

care graph, gaining advantages from both methods.

121

Appendices

122

A
nlsat Implementation Details

Acknowledging the importance that the details of a particular implementation play, in this ap-

pendix we describe which particular algorithms we used in our implementation, provide additional

references, discuss alternatives, and analyze the impact of different optimizations we tried. Our

procedure is based on several algorithms for manipulating polynomials and real algebraic num-

bers. Although most of the operations in these two modules have polynomial time complexity,

they are the main bottleneck of our procedure. In our set of benchmarks, we identified two clear

bottlenecks: the computation of principal subresultant coefficients (psc); and checking the sign

of a multivariate polynomial in an irrational coordinate. In all benchmarks our prototype failed

to solve, the computation was “stuck” in one of these two procedures.

A.1 Polynomials

We represent multivariate polynomials using a sparse representation of the sum-of-monomials

normal form. Each monomial is a sorted vector of pairs of a variable and a degree. For example,

the monomial (x3
1x

2
3x4) is represented as the vector 〈(1, 3), (3, 2), (4, 1)〉. We store monomials in

a hash-table in order to have a unique reference for each monomial. A multivariate polynomial

consists of two vectors, one containing the monomials and the other containing the coefficients

with these monomials. The coefficients are arbitrary precision integers. The first monomial m

in every non constant polynomial p always contains the maximal variable x in p, and is always

the monomial of the highest degree in x, i.e deg(p, x) = deg(m,x). Thus, the maximal variable

of a polynomial and its degree can be quickly retrieved. Moreover, each polynomial has a unique

integer identifier and a flag for marking whether the monomials are sorted using lexicographical

order or not. Univariate polynomials are implemented separately and are represented as a dense

vector of coefficients. For example, the polynomial 2x5 + 3x+ 1 is represented using the vector

〈1, 3, 0, 0, 0, 2〉.

The polynomial arithmetic operations are implemented using the straightforward algorithms.

Faster polynomial multiplication algorithms based on Fast-Fourier Transforms only outperform

123

the näıve algorithms for polynomials that are well beyond the current capabilities of our decision

procedure. We use the standard polynomial pseudo-division algorithm ([25, 59]). In many algo-

rithms (GCD, resultant, psc), exact multivariate polynomial division is used. We say the division

of a polynomial p by a polynomial q is exact when there is a polynomial h such that p = qh. We

use the exact division algorithm described at [9] (Algorithm 8.6) . We implemented three different

multivariate polynomial GCD algorithms: subresultant GCD (Chapter 3 [25]), Brown’s modular

GCD and Zippel’s sparse modular probabilistic GCD (Chapter 7 [48]). Although the resultant

of two polynomials is formally defined as the determinant of the Sylvester-Habicht Matrix, we

used the algorithm based on polynomial pseudo-division, GCD and exact division described at

[25] (Algorithm 3.3.7). We also implemented the principal subresultant coefficient algorithm in

a similar fashion. The resultant of two polynomials can also be computed using modular tech-

niques similar to the ones used to compute the GCD of two polynomials. However, we did not

implement the modular resultant procedure yet. To the best of our knowledge, QEPCAD uses

this modular algorithm to control the coefficient growth in the resultant computation.

Regarding polynomial factorization, we perform square-free factorization of a polynomial f

using the GCD and its derivative with respect to some variable in f . The polynomial is then

put into the form
∏
fkk , where each fk is the product of all factors of degree k. We extract

content and primitive parts of a polynomial using the GCD and exact division. We use the

standard approach for univariate factorization, where we first factor a square free polynomial in

a finite field GF (p) for some small prime p s.t. the factorization is also square free. Then, the

factorization is lifted using Hensel’s lemma, and finally we search for factors in the resulting set

of polynomials. Further details can be found in [25, 59]. In the current prototype, we do not

have support for full multivariate factorization.

We implemented two algorithms for root isolation of univariate polynomials with integer

coefficients. One is based on Sturm sequences, and another on the Descartes’ rule of signs [21].

In both cases, the computations are performed using binary rational numbers [22], also known

as dyadic rationals. The ring Z[1/2] of binary rational numbers is the smallest subring of Q that

contains Z and 1/2. Binary rationals are rational numbers of the form a/2k. Z[1/2] is not a field,

but it is closed under division by 2. We represent binary rationals using an arbitrary precision

integer for a, and a machine unsigned integer for k. The procedures for computing with binary

124

rational numbers are more efficient than the equivalent ones for rational numbers.

A.2 Real algebraic numbers

In our implementation, a real algebraic number is either a rational number or a square free

polynomial f in Z[x] and an isolating interval of binary rational numbers. Moreover, zero is not

a root of f , and the isolating interval does not contain zero. Several algorithms for manipulating

algebraic numbers are greatly simplified when square free polynomials are used. Recall that a

square free polynomial for f can be computed using exactdiv(f, gcd(f, f ′)), where f ′ is the first

derivative of f . The arithmetical operations +, −, ×, / on algebraic numbers are implemented

using resultants [25, 68]. To evaluate the sign of a polynomial p(x1, . . . , xk) at (α1, . . . , αk), we

first use interval arithmetic. If the result interval does not contain zero, we are done. Otherwise,

we replace all rational αi’s, and try to use interval arithmetic again. We also refine the intervals

of each irrational algebraic number until the result interval does not contain zero or the αi’s

intervals have size less that 1/232. If the result interval still contains zero, let us assume without

loss of generality that none of the αi’s are rationals. Then, we compute

R1 = resultant(y − p(x1, . . . , xn), q1, x1)

. . .

Rk = resultant(Rk−1, qk, xk)

where resultant(p, q, x) is the resultant of polynomials p and q with respect to variable x, and qi

is the defining polynomial for αi. Rk is a polynomial in y and, by resultant theory, the number

p(α1, . . . , αk) is a root of Rk. Now, we compute a lower bound for the nonzero roots of Rk. This

can be accomplished using the same algorithm used to compute a upper bound for the roots of

a polynomial. We use the polynomial root upper bound algorithm described in [22]. Using this

bound we can keep refining the αi’s intervals until the result interval for p(α1, . . . , αk) does not

contain zero, or it is smaller than the lower bound for nonzero roots. In the second case, we have

shown that p(α1, . . . , αk) is zero.

125

For isolating the roots of p(α1, . . . , αk, y), we use a similar approach. We compute

R1 = resultant(p(x1, . . . , xk, y), q1, x1)

. . .

Rk = resultant(Rk−1, qk, xk)

However, Rk vanishes if p(x1, . . . , xn, y) vanishes for some roots of q1, . . . , qk. For example, let

p(x1, x2, y) = x1y+x2y, and α1 = α2 = (x2−2, (0, 2)). That is, α1 and α2 are the
√

2. However,

p vanishes for p(
√

2,−
√

2, y). Thus, R2 is the zero polynomial. To cope with this issue, we use

a technique described in [87]. The basic idea is to use algebraic number arithmetic to evaluate

the coefficients of p until we find one that does not vanish, or we prove that p(α1, . . . , αn, y) is

the zero polynomial.

A.3 Analysis

In this section, we analyze the impact of different algorithms and optimizations we tried. For that,

we used an extended set of benchmarks containing 8928 problems. It was not computationally

feasible to execute all other systems on this extended set. We remark that all benchmarks that

our procedure could not solve or took more than one millisecond to solve are included in the

results described in Section 2.4.

Benchmarks. The first observation is that most benchmarks can be solved with very few

conflict resolution steps. Only 23 problems required more than 1000 conflict resolutions to be

solved. The number of psc chain computations is also very small. Only 17 problems required more

than 1000 psc computations. In our prototype, if possible we select a rational number in the rule

Lift-Stage. Therefore, many benchmarks can be solved without using any irrational algebraic

number computation. Only 1826 benchmarks required irrational algebraic number computations

to be solved.

Sparse modular GCD. The use of the sparse modular GCD algorithm instead of the subre-

sultant GCD greatly improved the performance of our procedure. For 43 Meti-Tarski and Zankl

benchmarks, we observed a two order of magnitude speedup.

126

Factorization. A standard technique used in CAD consists in factoring the polynomials ob-

tained using the projection operator. If we disable factoring, 30 benchmarks from Meti-Tarski,

Zankl and Hong families cannot be solved anymore, and another 18 benchmarks suffer from a

two orders of magnitude slowdown. This suggests we may obtain even better performance results

after we implement full multivariate polynomial factorization in our procedure.

Minimal polynomials. The minimal polynomial f of an algebraic number α is the unique

irreducible polynomial of smallest degree with integer coefficients such that f(α) = 0. Minimal

polynomials are obtained using univariate polynomial factorization. Note that every minimal

polynomial is square-free. By default, we use minimal polynomials for representing algebraic

numbers. If we just use arbitrary square-free polynomials (that are not necessarily minimal) for

encoding algebraic numbers, our procedure fails to solve 5 Meti-Tarski benchmarks, and suffers

a two orders of magnitude slowdown on 12 other Meti-Tarski benchmarks.

Root isolation. By default, our procedure uses the Descartes’ rule of signs procedure for iso-

lating the roots of univariate polynomials. If we switch to a procedure based on Sturm sequences,

the performance impact is negligible. Only one Meti-Tarski benchmark suffers from one order of

magnitude slowdown.

Full dimensional. We say a problem is full dimensional if it contains only strict inequalities.

A satisfiable full dimensional problem always has rational solutions. A standard optimization

used in CAD-based procedures consists in ignoring sections when processing existential problems.

This optimization is justified by the fact that in a full dimensional problem adding a constraint

of the form f 6= 0, for some nonzero polynomial f , does not change the satisfiability of the

problem. To the best of our knowledge, both QEPCAD and Mathematica use this optimization.

We implement this approach in our procedure by simply using polynomial constraints of the form

yk ≤r root(f, i, yk) and yk ≥r root(g, j, yk) instead of yk <r root(f, i, yk) and yk <r root(g, j, yk)

when a problem is in the full dimensional fragment. With this optimization our prototype solved

an extra 12 problems.

127

Variable reordering. Variable order has a dramatic impact on CAD-based procedures. Math-

ematica uses heuristics for ordering variables, but we could not find any reference describing the

actual heuristics used. We used a simple variable reordering heuristic. First, we compute the

maximal degree maxdeg of each variable in the initial set of constraints. Then, before starting

our procedure, we sort the variables using the total order

xi ≺ xj ⇔ maxdeg(xi) > maxdeg(xj) ∨ (maxdeg(xi) = maxdeg(xj) ∧ i < j) .

With this simple heuristic, our prototype can solve 54 (35 from the Meti-Tarski, and 15 from the

Zankl set) problems that it could not solve. However, the heuristic also prevents our procedure

from solving 3 (2 from Meti-Tarski, and 1 from the Zankl set) that could be solved without using

it. These results suggest that further work should be invested in developing variable reordering

techniques. Dynamically variable reordering during the search is also a promising possibility.

However, to guarantee termination it should be eventually disabled.

128

B
More on Theory Combination

In order to preserve the flow of the main text we’ve omitted some more technical results from the

chapter on combination of theories. For completeness we present these additional results here.

B.1 Being Flat is General Enough

When proving that a Σ-theory is smooth or finitely witnessable with respect to a set of sorts S,

we can restrict ourselves to conjunctions of flat Σ-literals. The following two lemmas show that

this can indeed be done without loss of generality. The proofs are simple and already presented

in [79], but we reiterate them here since they are affected by the change in the definition of finite

witnessability.

Lemma B.1. Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be a Σ-theory. Assume

that:

• for every T -satisfiable conjunction of flat Σ-literals ψ,

• for every T -interpretation A satisfying ψ,

• for all choices of cardinal numbers κσ, such that κσ ≥ |Aσ| for all σ ∈ S,

there exists a T -interpretation B satisfying ψ such that |Bσ| = κσ, for all σ ∈ S. Then T is

smooth with respect to S.

Proof. Assume that a quantifier-free Σ-formula φ is satisfiable in a T -interpretation A and we

are given cardinal numbers κσ, such that κσ ≥ |Aσ| for all σ ∈ S. We can transform φ into

its disjunctive normal form DNF (φ) = ψ1 ∨ . . . ∨ ψm. Since φ and DNF (φ) are equivalent,

T -interpretation A will satisfy one of the disjuncts ψk, for some 1 ≤ k ≤ m. We can transform

ψk into a conjunction of flat literals ψ by introducing fresh variables −→v , such that ψk is logically

equivalent to ∃−→v .ψ. It follows that there exists a T -interpretation A′ equivalent to A except in

its interpretation of −→v such that A′ satisfies ψ.

129

From here, we use the assumptions to obtain a new T -interpretation B satisfying ψ such that

|Bσ| = κσ, for all σ ∈ S. B will also satisfy ∃−→v .ψ and, by equivalence, also ψk, DNF (φ) and φ.

This shows that T is smooth with to respect to S.

Lemma B.2. Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T be a Σ-theory. Assume

there exists a computable function, witnessF , which, for every conjunction of flat Σ-literals φ,

returns a quantifier-free Σ-formula ψ = witnessF (φ) such that

• φ and (∃−→w)ψ are T -equivalent, where −→w = vars(ψ) \ vars(φ) are fresh variables;

• if ψ∧δV is T -satisfiable, for an arrangement δV , where V is a set of variables of sorts in S,

then there exists a T -interpretation A satisfying ψ ∧ δV such that Aσ = [varsσ(ψ ∧ δV)]
A

,

for all σ ∈ S.

Then T is finitely witnessable with respect to S.

Proof. We want to define a witness function witness on all quantifier-free Σ-formulas by using

the function witnessF as a black box. Let φ be a quantifier-free Σ-formula, we compute witness

using the following steps

1. convert φ into a T -equivalent disjunctive normal form DNF (φ) = ψ1 ∨ . . . ψm;

2. transform each disjunct ψi into a conjunction of flat Σ-literals ψ′i by introducing fresh

variables;

3. let witness(φ) = witnessF (ψ′1) ∨ . . . ∨ witnessF (ψ′m).

If −→v i are the fresh variables introduced by flattening ψi, we know that ψi and ∃−→v i.ψ′i are

logically equivalent. Since ψ′i is T -equivalent to ∃−→w i.witnessF (ψ′i), where −→w i are the fresh vari-

ables introduced by applying the witness function, we can conclude that ∃−→v i∃−→w i.witnessF (ψ′i)

is T -equivalent to ∃−→v i.ψ′i, and hence also T -equivalent to ψi. Since we can move existential

quantifiers over disjunctions (maintaining logical equivalence), we can also conclude that φ is T -

equivalent to ∃−→v 1∃−→w 1 . . . ∃−→v m∃−→wm.witness(φ). This proves the first requirement of the witness

function.

For the second requirement, let ψ = witness(φ) and assume that ψ ∧ δV is T -satisfiable in

a T -interpretation A, for an arrangement δV , where V is a set of variables of sorts in S. This

130

implies that one of the disjuncts, say witnessF (ψ′k), together with δV , is satisfied in A, for some

1 ≤ k ≤ m. Of course, it is likely the case that varsS(witnessF (ψ′k) ∧ δV) does not include all

the variables present in varsS(ψ ∧ δV), but we can add the missing variables to our arrangement

δV
1, while keeping compatibility with A, thus obtaining a stronger arrangement δ′.

Using the assumptions we can therefore get a T -interpretation B that satisfies witnessF (ψ′k)∧δ′

such that

Bσ = [varsσ(witnessF (ψ′k) ∧ δ′)]B = [varsσ(witness(φ) ∧ δV)]
B
,

for all σ ∈ S. Since δ′ includes δV , B will also satisfy witnessF (ψ′k) ∧ δV , and hence also

witness(φ) ∧ δV . This proves that T is indeed finitely witnessable.

B.2 Preservation of Theory Properties under Combination

We show that stable-infiniteness is preserved when combining theories.

Proposition B.1. Let Σ1 and Σ2 be signatures. If

• T1 is a Σ1-theory stably-infinite with respect to S1 ⊆ ΣS
1,

• T2 is a Σ2-theory stably-infinite with respect to S2 ⊆ ΣS
2,

• ΣS
1 ∩ ΣS

2 = S1 ∩ S2,

then T1 ⊕ T2 is a (Σ1 ∪ Σ2)-theory and is stably-infinite with respect to S1 ∪ S2.

Proof. Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2, S = S1 ∩ S2. Assume φ is a Σ-formula satisfied in

a T -interpretation A. As in the Nelson-Oppen algorithm, we can separate φ into the Σ1-part

φ1 and the Σ2-part φ2. We can assume wlog that A is an interpretation over the variables

vars(φ1) ∪ vars(φ2) and that A |= φ1 ∧ φ2. Let V = varsS(φ1) ∩ varsS(φ2). Let δV be the

arrangement over these variables that agrees with A. We have that AΣ1,vars(φ1) � φ1 ∪ δV and

AΣ2,vars(φ2) � φ2 ∪ δV .

1This is the reason why the definition of finite witnessability includes the arrangement over an arbitrary set of

variables V instead of just an arrangement over varsS(ψ2).

131

Since T1 is stably-infinite with respect to S1, we can conclude that there is a T1-interpretation

B such that the cardinalities |Bσ| are infinite for σ ∈ S1 and B � φ1 ∪ δV . Similarly, there is a

T2-interpretation C with infinite cardinalities |Cσ|, σ ∈ S2 and C � φ2 ∪ δV . By the downward

Löwenheim-Skolem theorem in the many-sorted setting,2 we can assume that the cardinalities

|Bσ| and |Cσ| are the same for σ ∈ S.

It is easy to see that B and C satisfy all the conditions of Theorem 3.5, so we can conclude

that there is a T -interpretation D that satisfies φ1 ∧φ2 (and hence φ) such that the cardinalities

|Dσ| are infinite for σ ∈ S1 ∪ S2.

Proposition 3.1 shows how to combine two theories, one of which is polite. However, the

theorem tells us nothing about the politeness of the resulting (combined) theory. In particular,

if we want to combine more than two theories by iterating the combination method, we cannot

assume that the result of applying Proposition 3.1 is a theory that is polite with respect to any

(non-empty) set of sorts.

In this section, we show that the combination described in Proposition 3.1 does preserve

politeness over some of the sorts. This lays the foundation for the more general combination

theorem described in Section B.3.

S2

Σ1
S Σ2

S∩

S1

S*

Σ2
SΣ1

S

Figure B.1: Diagram for Theorem B.1.

Theorem B.1. Let Σ1 and Σ2 be signatures and let S = ΣS
1 ∩ ΣS

2. If

1. T1 is a Σ1-theory polite with respect to S1 ⊆ ΣS
1,

2See Theorem 9 in [93] for the statement, or [94] for a full proof. The theorem there is in the more general

setting of order-sorted logic, of which ordinary many-sorted logic is a simple instance.

132

2. T2 is a Σ2-theory polite with respect to S2 ⊆ ΣS
2,

3. S ⊆ S2,

then T1 ⊕ T2 is polite with respect to S∗ = S1 ∪
(
S2 \ ΣS

1

)
.

Proof. First we prove that the combined theory is smooth with respect to S∗. Let T = T1 ⊕ T2,

Σ = Σ1∪Σ2, and assume that φ is a conjunction of flat Σ-literals satisfiable in a T -interpretation

A. We are given cardinalities κσ ≥ |Aσ|, for all σ ∈ S∗, and we must construct a new T -

interpretation satisfying φ that obeys the given cardinalities.

We can separate φ into a Σ1-part φ1 and a Σ2-part φ2 such that φ = φ1∧φ2. Let Vi = vars(φi).

We know that:

AΣ1,V1 �T1 φ1 ,

AΣ2,V2 �T2
φ2 .

Since T2 is finitely witnessable, we know there is a witness function witness2 such that φ2 is T2-

equivalent to (∃−→w)ψ2 for ψ2 = witness2(φ2). Since the variables in −→w are fresh, we can assume

without loss of generality that A |= ψ2. If we then let V ′2 = V2 ∪ vars(−→w), we have:

AΣ1,V1 �T1
φ1 ,

AΣ2,V
′
2 �T2

ψ2 .

Now, let VS = varsS(ψ2) and VS = varsS2\S(ψ2) and let δVS and δVS be the (unique) arrangements

of these sets of variables that are satisfied by A. We can add these arrangements (letting V ′1 =

V1 ∪ varsS(ψ2)) to obtain:

AΣ1,V
′
1 �T1

φ1 ∧ δVS ,

AΣ2,V
′
2 �T2

ψ2 ∧ δVS ∧ δVS .

Because T1 is smooth with respect to S1, we can lift the domains of sorts σ ∈ S1 to cardinalities

κσ, i.e. there is a T1-interpretation B that satisfies φ1 ∧ δVS with |Bσ| = κσ for κ ∈ S1. We can’t

assume anything about the rest of the sorts, so let κ′σ = |Bσ| for σ ∈ S \ S1.

133

Next, because T2 is finitely witnessable with respect to S2, we know that there is a T2-

interpretation C that satisfies ψ2 ∧ δVS ∧ δVS such that for σ ∈ S2 we have

Cσ =
[
varsσ(ψ2 ∧ δVS ∧ δVS)

]C
= [varsσ(VS ∪ VS)]

C
.

Consider the sizes of the domains in C:

• for σ ∈ S ∩ S1, we have that |Cσ| ≤ |Bσ| = κσ, since both C and B agree on δVS ;

• for σ ∈ S \ S1, we have that |Cσ| ≤ |Bσ| = κ′σ, since both C and B agree on δVS ;

• for σ ∈ S2 \ S, we have that |Cσ| ≤ |Aσ| ≤ κσ, since both C and A agree on δVS .

Finally, because T2 is smooth with respect to S2, we know there is a T2-structure D that satisfies

ψ2 ∧ δVS ∧ δVS such that:

• for σ ∈ S ∩ S1, we have that |Dσ| = |Bσ| = κσ;

• for σ ∈ S \ S1, we have that |Dσ| = |Bσ| = κ′σ;

• for σ ∈ S2 \ S, we have |Dσ| = κσ.

Since the structures B and D agree on the sizes of the shared sorts, and they agree on the

arrangement of the common variables, we know from Theorem 3.5 that we can combine them into

a T -interpretation F that satisfies φ1∧ψ2 and has the required cardinalities. This interpretation

also satisfies φ, so T is smooth with respect to S∗.

The second part of the proof requires showing that T is finitely witnessable with respect to

S∗. Let φ be a conjunction of flat Σ-literals. Again, we can separate φ into φ1 ∧ φ2 such that

φ1 is a Σ1-formula and φ2 is a Σ2-formula. Since T1 and T2 are both finitely witnessable (with

respect to S1 and S2 respectively), there are computable witness functions witness1 and witness2.

We define the witness function witness for T using the following steps:

1. compute the T2 witness function ψ2 = witness2(φ2);

2. let E be the set of all equivalence relations over VS = varsS(ψ2);

3. compute the T1-part of the witness function

ψ1 =
∨
E∈E

witness1(φ1 ∧ δ(E)) ;

134

4. let ψ = witness(φ) = ψ1 ∧ ψ2.

To show the first requirement of Definition 3.7, suppose we have a T -interpretation A such

that

A � φ1 ∧ φ2 .

We can use the T2-equivalence of applying witness2 to obtain

A � φ1 ∧ ∃−→w 2.ψ2 ,

where −→w 2 = vars(ψ2)\vars(φ2). It follows that we can find a suitable vector of elements −→a 2 such

that

A{−→w 2 ← −→a 2} � φ1 ∧ ψ2 .

Now, let ES be the unique equivalence relation over VS = varsS(ψ2) compatible with A{−→w 2 ←
−→a 2}. Adding the arrangement δ(ES) and using the T1-equivalence of applying witness1 we

further obtain

A{−→w 2 ← −→a 2} � φ1 ∧ δ(ES) ∧ ψ2 ,

A{−→w 2 ← −→a 2} � ∃−→w 1.witness1(φ1 ∧ δ(ES)) ∧ ψ2 ,

where −→w 1 = vars(witness1(φ1∧ δ(ES)))\vars(φ1∧ δ(ES)). Since we always assume that variables

introduced by witness functions are fresh, we can safely conclude that −→w 1 and −→w 2 are disjoint

and thus there is a suitable −→a 1 such that

A{−→w 1 ← −→a 1,
−→w 2 ← −→a 2} � witness1(φ1 ∧ δ(ES)) ∧ ψ2 .

Let −→w 3 be the variables from vars(ψ) \ vars(φ) not already in −→w 1 or −→w 2. Clearly there is an −→a 3

such that

A{−→w 1 ← −→a 1,
−→w 2 ← −→a 2,

−→w 3 ← −→a 3} � witness1(φ1 ∧ δ(ES)) ∧ ψ2 . (B.1)

Finally, since witness1(φ1 ∧ δ(ES)) entails ψ1, we can conclude

A{−→w 1 ← −→a 1,
−→w 2 ← −→a 2,

−→w 3 ← −→a 3} �
∨
E∈E

witness1(φ1 ∧ δ(E)) ∧ ψ2 , (B.2)

and thus

A � ∃−→w 1∃−→w 2∃−→w 3.ψ .

135

To show the implication in the other direction, each step is straightforward except the step

from equation B.2 to equation B.1. Notice however, that because of the first property of witness

functions, if a T1 interpretation satisfies witness1(φ1 ∧ δ(E)), then it also satisfies δ(E). Now,

since exactly one arrangement δ(E) is true in a particular interpretation, this means that exactly

one of the disjuncts holds.

To see that the second requirement of Definition 3.7 is also satisfied, letA be a T -interpretation

satisfying ψ∧δS∗ , where δS∗ is an arrangement over a set V of variables with sorts in S∗. We will

assume that varsS∗(ψ) ⊆ V , as we can always add the extra variables from ψ to the arrangement

while keeping compatibility with A. This does not affect the correctness of our argument: we

will show that there is an interpretation E such that E |=T ψ ∧ δS∗ and Eσ = [varsσ(ψ ∧ δS∗)]E ;

notice that if extra variables from ψ were included in δS∗ , we can remove them and the same

interpretation E still has the desired properties.

In the following, for any set U of sorts, we will abbreviate δvarsU (V) as δU . Note that δS∗ can

be decomposed into:

δS∗ = δS1\S ∧ δS1∩S ∧ δS2\S .

We can construct an additional variable arrangement δS\S1
over the variables varsS\S1

(ψ2) that

is compatible with A. These arrangements are all true in A, so letting Vi = varsΣS
i
(ψ ∧ δS∗) we

have:

AΣ1,V1 �T1

(
ψ1 ∧ δS1\S ∧ δS1∩S ∧ δS\S1

)
= Ψ1 ,

AΣ2,V2 �T2

(
ψ2 ∧ δS2\S ∧ δS1∩S ∧ δS\S1

)
= Ψ2 .

Expanding the first equation (and dropping the last arrangement) we get that

AΣ1,V1 �T1

∨
E∈E

witness1(φ1 ∧ δ(E)) ∧ δS1\S ∧ δS1∩S .

Note that exactly one of the arrangements δ(E) is satisfied by AΣ1,V1 . Call this arrangement

δ(ES). Because of the T1-equivalence of applying witness1, we have

AΣ1,V1 �T1
witness1(φ1 ∧ δ(ES)) ∧ δS1\S ∧ δS1∩S = Ψ′1 .

Now, because T1 is finitely witnessable over S1, we can obtain a T1-interpretation B such that

B �T1 Ψ′1 ,

136

and for all σ ∈ S1 we have Bσ = [varsσ(Ψ′1)]
B

. Note that though Ψ′1 and Ψ1 differ, we have

that vars(Ψ′1) ⊆ vars(Ψ1). We can thus extend B arbitrarily to interpret all of the variables in

vars(Ψ1) so that Bσ = [varsσ(Ψ1)]
B

for σ ∈ S1.

Because B |= Ψ′1, we know that B will also satisfy δ(ES) (by the first property of witness1).

Now, since δ(ES) includes all the variables in δS\S1
by definition (they both only arrange the

variables from ψ2), and because both δ(ES) and δS\S1
are satisfied by the same interpretation

A, we know that B also satisfies δS\S1
:

B �T1 witness1(φ1 ∧ δ(ES)) ∧ δS1\S ∧ δS1∩S ∧ δS\S1
.

Since one disjunct of ψ1 is satisfied, we can conclude that

B �T1
Ψ1 .

Now, let’s consider Ψ2. Because T2 is finitely witnessable over S2, we can obtain a T2-

interpretation C satisfying Ψ2 such that for σ ∈ S2, we have Cσ = [varsσ(Ψ2)]
C
.

Since both B and C satisfy the arrangement δS1∩S and this arrangement contains all the

variables of sorts S1 ∩S from ψ1 and ψ2, it follows that for σ ∈ S1 ∩S, we have |Bσ| = |Cσ|. For

the other shared sorts σ ∈ S \ S1, we have that |Cσ| ≤ |Bσ| because Ψ1 and Ψ2 agree on δ{σ},

and we know that Cσ does not interpret any elements beyond those named by variables in δ{σ}

(since we chose δS\S1
to include varsS\S1

(ψ2)).

As in the proof of smoothness, we now proceed to combine the two structures. By smoothness

of T2 with respect to S2 we can lift the structure C to a structure D that satisfies Ψ2, such that

• |Dσ| = |Bσ| = |Cσ| for σ ∈ S1 ∩ S2,

• |Dσ| = |Bσ| ≥ |Cσ| for σ ∈ S \ S1,

• |Dσ| = |Cσ| for σ ∈ S2 \ S.

Interpretations B and D agree on the arrangements δS∩S1 ∧ δS\S1
. These arrangements include

all of the shared variables of Ψ1 and Ψ2. For sorts in S ∩S1, this follows by our assumption that

δS∗ includes all the variables in ψ of sorts in S∗. For sorts in S \ S1, this follows from the fact

that δS\S1
includes all the variables in varsS\S1

(ψ2).

137

Finally, by Theorem 3.5, given interpretations B and D, we can find an interpretation E

satisfying Ψ1 ∧ Ψ2, because they agree on the arrangement over the shared variables of Ψ1 and

Ψ2, and have the same cardinalities over the shared sorts. Moreover, since we are keeping the

cardinalities of B over S1 and C over S2 \ S, and these cardinalities are determined by the

arrangements in δ∗S , and varsS∗(Ψ1 ∧ Ψ2) = vars(δS∗), we will also have that for all σ ∈ S∗,

Eσ = [varsσ(Ψ1 ∧Ψ2)]
E

= [varsσ(ψ ∧ δS∗)]E , as required. This concludes the proof of finite

witnessability and shows that T1 ⊕ T2 is polite with respect to S∗.

We illustrate the application of the theorem with an example using two theories of arrays.

Example B.1. Let Tarray,1 and Tarray,2 be two theories of arrays over the following sets of sorts

respectively

S1 = {array1, index1, elem1} ,

S2 = {array2, index2, array1} .

These two theories together model two-dimensional arrays with indices in index1 and index2,

and elements in elem1.

We know that the theory Tarray,1 is polite with respect to S∗1 = {index1, elem1}, and the

theory Tarray,2 is polite with respect to S∗2 = {index2, array1}. Using Theorem B.1, we know

that we can combine them into a theory Tarray that is polite with respect to the set

S∗1 ∪ (S∗2 \ {array1}) = {index1, index2, elem1} .

This means that we can combine the theory of two-dimensional arrays with any other theories

that operate over the elements and indices, even if they are not stably-infinite (such as bit-

vectors for example).

An interesting corollary of Theorem B.1 is that, if both theories are polite with respect to the

shared sorts then, analogously to Proposition B.1, we get a theory that is polite with respect to

the union of the sorts.

138

Corollary B.1. Let Σ1 and Σ2 be signatures. If

• T1 is a Σ1-theory polite with respect to S1 ⊆ ΣS
1,

• T2 is a Σ2-theory polite with respect to S2 ⊆ ΣS
2,

• ΣS
1 ∩ ΣS

2 = S1 ∩ S2,

then T1 ⊕ T2 is polite with respect to S1 ∪ S2.

B.3 Combining Multiple Polite Theories

Given a Σ1-theory T1, polite with respect to sorts S1, and a Σ2-theory T2, polite with respect to

sorts S2, we will denote their combination using the combination framework for polite theories as

T1⊕pT2. Here, ⊕p is a partial, asymmetric operator: T1⊕pT2 is defined as T1⊕T2 if ΣS
1∩ΣS

2 ⊆ S2

and is undefined otherwise. Note that if defined, T1⊕p T2 is polite with respect to S1 ∪ (S2 \ΣS
1)

by Theorem B.1.

Because of the asymmetry in its definition, it is not obvious whether ⊕p is associative or

commutative. When dealing with several theories there might be several ways we could try to

combine them: given theories T1, T2 and T3, we could first combine T1 and T2 into T1 ⊕p T2 and

then combine the result with T3 to obtain (T1 ⊕p T2)⊕p T3. Or we might opt to combine T2 and

T3 first and then combine T1 with T2 ⊕p T3 to get the same theory T1 ⊕p (T2 ⊕p T3). Some of

these operations might not be defined, and if they are, it is not obvious whether Theorem B.1

ensures that the resulting theories are polite with respect to the same set of sorts.

Since, as explained above, there are several ways of obtaining a combined theory using the

combination framework, we will write T1 ↔p T2 to denote that T1 and T2 are either both

undefined or both defined, and in the latter case that T1 and T2 are polite with respect to the

same sets of sorts.

Lemma B.3. Let Ti be a Σi-theory, polite with respect to sorts Si, for i = 1, 2, 3. Then

T1 ⊕p (T2 ⊕p T3)↔p (T1 ⊕p T2)⊕p T3 . (B.3)

Proof. The proof of this statement primarily relies on simple manipulations in basic set theory.

For convenience, it might be easier to understand the result by looking at Figure B.2.

139

S2

S1

Σ2
SΣ1

S

Σ3
S

S3

Figure B.2: Diagram for Lemma B.3.

We first note that the theory combination operator ⊕ is clearly associative. Thus, it suffices

to show that if one side of (B.3) is defined, then the other is also, and that they are polite with

respect to the same sets of sorts.

Assume that the right-associative combination T1 ⊕p (T2 ⊕p T3) is defined. This implies that

we have

ΣS
2 ∩ ΣS

3 ⊆ S3 . (B.4)

Using Theorem B.1 we know that T2⊕T3 is polite with respect to S2 ∪ (S3 \ΣS
2). Then, since we

can combine T1 with T2 ⊕ T3, we must have ΣS
1 ∩ (ΣS

2 ∪ΣS
3) ⊂ S2 ∪ (S3 \ΣS

2) which is equivalent

to the following

ΣS
1 ∩ ΣS

2 ⊂ S2 ∪ (S3 \ ΣS
2) , (B.5)

ΣS
1 ∩ ΣS

3 ⊂ S2 ∪ (S3 \ ΣS
2) . (B.6)

It follows from (B.5) (intersecting both sides with ΣS
2) that

ΣS
1 ∩ ΣS

2 ⊆ S2 ,

which is enough to conclude that we can combine T1 and T2 into T1⊕T2. To be able to combine

T1 ⊕ T2 with T3 we must show that

(ΣS
1 ∪ ΣS

2) ∩ ΣS
3 ⊆ S3,

140

which is equivalent to

ΣS
1 ∩ ΣS

3 ⊆ S3 , (B.7)

ΣS
2 ∩ ΣS

3 ⊆ S3 . (B.8)

We have that (B.4) and (B.8) are the same. To show (B.7), it is sufficient to show both of the

following

(ΣS
1 ∩ ΣS

3) ∩ ΣS
2 ⊆ S3 ∩ ΣS

2 , (B.9)

(ΣS
1 ∩ ΣS

3) \ ΣS
2 ⊆ S3 \ ΣS

2 . (B.10)

Equation (B.9) follows directly from (B.8) (intersect both sides with ΣS
2 and then intersect just

the left side with ΣS
1). Equation (B.10) is obtained by subtracting ΣS

2 from both sides of (B.6).

This shows that the left-associative combination (T1 ⊕p T2)⊕p T3 is defined.

In the opposite direction, assume that the left-associative combination (T1 ⊕p T2) ⊕p T3 is

defined. For this to be possible we need to combine T1 and T2 first, so it must be the case that

ΣS
1 ∩ ΣS

2 ⊆ S2 . (B.11)

Next, to combine T1 ⊕ T2 with T3, we must have

(ΣS
1 ∪ ΣS

2) ∩ ΣS
3 ⊆ S3 . (B.12)

This is equivalent to

ΣS
1 ∩ ΣS

3 ⊆ S3 , (B.13)

ΣS
2 ∩ ΣS

3 ⊆ S3 . (B.14)

From (B.14) we immediately get that we can combine theories T2 and T3 into T2 ⊕ T3 which is

polite with respect to S2 ∪ (S3 \ ΣS
2). To be able to combine T1 with T2 ⊕ T3 we need to show

that

ΣS
1 ∩ (ΣS

2 ∪ ΣS
3) ⊆ S2 ∪ (S3 \ ΣS

2) .

This is in turn equivalent to

ΣS
1 ∩ ΣS

2 ⊆ S2 ∪ (S3 \ ΣS
2) , (B.15)

ΣS
1 ∩ ΣS

3 ⊆ S2 ∪ (S3 \ ΣS
2) . (B.16)

141

From (B.11) we immediately get (B.15). To show (B.16), it is sufficient to show both of the

following

(ΣS
1 ∩ ΣS

3) ∩ ΣS
2 ⊆ S2 , (B.17)

(ΣS
1 ∩ ΣS

3) \ ΣS
2 ⊆ S3 \ ΣS

2 . (B.18)

Equation (B.17) follows directly from (B.11). Equation (B.18) is obtained by subtracting ΣS
2

from both sides of (B.13). This proves that the right-associative combination T1⊕p (T2⊕p T3) is

defined.

To show that the order of combination has no impact on the resulting sets of polite sorts, we

compute the sets for both cases. If we consider the combination T1 ⊕p (T2 ⊕p T3), we would first

get that T2⊕ T3 is polite with respect to S2 ∪ (S3 \ΣS
2). Combining the resulting theory with T1

gives the final set of polite sorts

S1 ∪ (S2 ∪ (S3 \ ΣS
2)) \ ΣS

1 = S1 ∪ (S2 \ ΣS
1) ∪ (S3 \ (ΣS

1 ∪ ΣS
2)) . (B.19)

Combining in the other direction, we first get that T1 ⊕ T2 is polite with respect to S1 ∪ S2 \ΣS
1.

Combining the result with T3 gives the set of sorts (B.19).

Lemma B.3 gives us the associativity of ⊕p. The next lemma shows that we can also achieve

commutativity if both theories are polite with respect to at least the shared sorts.

Lemma B.4. Let Ti be a Σi-theory polite with respect to the set of sorts Si ⊆ ΣS
i , for i = 1, 2.

Then the following are equivalent

1. T1 ⊕p T2 ↔p T2 ⊕p T1;

2. ΣS
1 ∩ ΣS

2 = S1 ∩ S2.

Proof. If both T1 ⊕p T2 and T2 ⊕p T1 are defined, then we can use either T1 or T2 as the polite

theory in the combination framework. This means that both ΣS
1 ∩ ΣS

2 ⊆ S1 and ΣS
1 ∩ ΣS

2 ⊆ S2,

which implies that ΣS
1 ∩ ΣS

2 = S1 ∩ S2. In the other direction, if ΣS
1 ∩ ΣS

2 = S1 ∩ S2 holds, then

(1) is a consequence of Corollary B.1.

Now we give a general theorem for combining multiple theories in a sequential manner.

142

Theorem B.2. Let Ti be a Σi-theory, for 1 ≤ i ≤ n. Assume that

• theories Ti have no function or predicate symbols in common;

• the quantifier-free satisfiability problem of Ti is decidable, for 1 ≤ i ≤ n;

• Ti is polite with respect to Si, for 1 ≤ i ≤ n;

• ΣS
i ∩ ΣS

j ⊆ Sj, for 1 ≤ i < j ≤ n.

Then the quantifier-free satisfiability problem for T = T1 ⊕ · · · ⊕ Tn is decidable. Moreover, the

resulting theory T is polite with respect to the set of sorts

S =

n⋃
j=1

Sj \ (
⋃
i<j

ΣS
i)

 .

Proof. We prove the statement by induction on the number of theories n. In the base case,

when n = 2, this directly follows from Proposition 3.1 and Theorem B.1, i.e. if we have that

ΣS
1∩ΣS

2 ⊆ S2, then we know how to devise the decision procedure for T1⊕T2 using the algorithm

from [79]. Moreover, the resulting theory is polite with respect to S1 ∪ (S2 \ ΣS
1).

Assume that the statement holds for n > 1 and consider the case for n+ 1. By the inductive

hypothesis, we have that the theory T = T1 ⊕ · · · ⊕ Tn over the signature Σ = Σ1 ∪ . . . ∪ Σn is

decidable and polite with respect to

S =

n⋃
j=1

Sj \ (
⋃
i<j

ΣS
i)

 .

We have that ΣS
i ∩ ΣS

n+1 ⊆ Sn+1, for 1 ≤ i ≤ n. Taking the union of these we get that

(ΣS
1 ∪ . . . ∪ ΣS

n) ∩ ΣS
n+1 = ΣS ∩ ΣS

n+1 ⊆ Sn+1

Since quantifier-free satisfiability in both T and Tn+1 are decidable and the theories satisfy the

conditions of Proposition 3.1 and Theorem B.1, we know that quantifier-free satisfiability is

decidable in the combination T ⊕Tn+1 = T1⊕· · ·⊕Tn+1. Furthermore, the combination is polite

143

with respect to the set

S =

n⋃
j=1

Sj \ (
⋃
i<j

ΣS
i)

 ∪ (Sn+1 \
n⋃
k=1

ΣS
k)

=

n+1⋃
j=1

Sj \ (
⋃
i<j

ΣS
i)

 .

This concludes the proof.

Example B.2. Assume we have a theory of arrays Tarray,1 over the sorts

ΣS
array,1 = {array1, index1, elem} ,

as well as theories of arrays Tarray,k over the sorts

ΣS
array,k = {arrayk, indexk, arrayk−1} ,

for k ≥ 2. These theories represent different layers in the theory of n-dimensional arrays.

The theories satisfy the assumption of Theorem B.2 and thus we can combine them into the

full theory

Tarray = Tarray,1 ⊕ Tarray,2 ⊕ · · · ⊕ Tarray,n .

This theory is polite with respect to the union of all indices and elements

S = {index1, index2, . . . , indexn, elem} .

Note that, although we are combining theories in a straightforward fashion, we could not

have used Theorem 14 from [80] to achieve this combination, since the common intersection of

the polite sets of sorts is empty, and the pairwise intersection of sorts is not. More importantly,

we are able to easily deduce the politeness of the resulting theory.

We finish this section with a theorem that gives an easy complete method for checking whether

we can combine a set of theories in the framework of multiple polite theories.

144

Theorem B.3. Let T1, T2, . . . , Tn be pairwise signature-disjoint theories such that individual

quantifier-free Ti-satisfiability problems are decidable. The quantifier-free satisfiability problem of

T = T1 ⊕ · · · ⊕ Tn is decidable by iterating the polite combination method for two theories if and

only if there is a reordering of the theories Ti that satisfies the conditions of Theorem B.2.

Proof. The if direction is obvious. In the other direction, assume there is a way to combine the

theories Ti using the framework. Then there exists some expression combining the Ti’s using ⊕p

that is defined. Using the associativity of ⊕p (from Lemma B.3), we can transform the expression

into a sequential combination (· · · (Tp1 ⊕p Tp2) ⊕p Tp3) ⊕p · · · ⊕p Tn−1) ⊕p Tn that satisfies the

requirements of Theorem B.2.

B.4 Theory Instantiations

The way theories are defined in Definition 3.1 is meant to be general, i.e. the sorts can be

interpreted in any domain. But, sometimes we are interested in a variant of a theory obtained by

identifying some of the sorts. For example, consider a theory of arrays with elements and indices,

i.e. ΣS
array = {array, elem, index}. In practice, we often deal with a closely related theory of arrays

in which the indices and the elements are from the same sort. Note that these two theories are

indeed different – in the general theory of arrays, the well-sortedness prevents us from comparing

indices with elements (the term read(a, i) 6= i is not well-sorted, for example). We will call this

merging of sorts theory instantiation by sort equality.

Definition B.4 (Signature Instantiation). Let Σ = (S, F, P) be a signature. We call Σσ1=σ2
s =

(S′, F ′, P ′) a signature instantiation by sort equality σ1 = σ2, for sorts σ1, σ2 ∈ S and s /∈ S, if

the following holds:

• S′ = (S \ {σ1, σ2}) ∪ {s};

• F ′ contains the same function symbols as F except that we replace σ1 and σ2 with s in

every arity;

• P ′ contains the same predicate symbols as P except that we replace σ1 and σ2 with s in

every arity.

145

To enable the translation of formulas from the instantiated signature to the original signa-

ture and vice versa, we will use the satisfiability-preserving (see Lemma B.6) syntactic formula

transformation α that maps conjunctions of flat Σσ1=σ2
s -literals into formulas from the signature

Σ. Given such a conjunction φ =
∧

1≤k≤m lk, with varss(φ) = {v1, v2, . . . , vn}, we first introduce

fresh variables vσ1
i of sort σ1, and vσ2

i of sort σ2, for i = 1, . . . , n. The function α transforms the

formula φ into

α(φ) ,
∧

1≤k≤m

αl(lk) ∧
∧

1≤i<j≤n

(
vσ1
i =σ1 v

σ1
j ↔ vσ2

i =σ2 v
σ2
j

)
,

The transformation αl acts on the individual literals as follows:

• Literals of the form x =σ y and x 6=σ y, where σ 6= s, are left unchanged.

• Literals of the form x =s y and x 6=s y are transformed into xσ1 =σ1
yσ1 and xσ1 6=σ1

yσ1

respectively.3

• Literals of the form x =σ f(y1, . . . , yn), where σ 6= s, are transformed into x =σ f(y∗1 , . . . , y
∗
n).

The variables y∗i are taken to comply with the original arity of f in Σ, i.e.

y∗i =


yσ1
i if yi should be of sort σ1 in the arity of f in Σ,

yσ2
i if yi should be of sort σ2 in the arity of f in Σ,

yi otherwise.

• Literals of the form x =s f(y1, . . . , yn) are transformed into either xσ1 =σ1
f(y∗1 , . . . , y

∗
n) or

xσ2 =σ2 f(y∗1 , . . . , y
∗
n), depending on the sort of the co-domain of f in Σ.

• Literals of the form p(y1, . . . , yn) and ¬p(y1, . . . , yn) are transformed in a similar manner.

In the other direction, we define a transformation γV , where V is a set of variables of sort s,

from Σ-formulas to Σσ1=σ2
s -formulas, as follows

γV (φ) = φ ∧
∧
v∈V

(vσ1 = v ∧ vσ2 = v) .

In the new formula variables formerly of sort σ1 or σ2 are now of sort s.

3The choice of σ1 over σ2 is arbitrary, as the right part of α(φ) will force the same on the dual variables.

146

Definition B.5 (Theory Instantiation). Let Σ be a signature and T = (Σ,A) be a Σ-theory.

We call a theory Tσ1=σ2
s = (Σσ1=σ2

s ,B) the theory instantiated by sort equality σ1 = σ2, for sorts

σ1, σ2 ∈ ΣS and s /∈ ΣS, when B ∈ B iff

• there exists an A ∈ A such that Bs = Aσ1 = Aσ2 , and Bσ = Aσ for σ 6= s; and

• all the predicate and function symbols in Σσ1=σ2
s are interpreted in B exactly the same as

they are interpreted in A.

The above definition simply restricts the original theory structures to those in which the sorts

σ1 and σ2 are interpreted by the same domain. The lemma below shows that the result, Tσ1=σ2
s ,

is indeed a theory.

As we did with formulas, we define a transformation on structures (which we will also call α)

that maps Σσ1=σ2
s -interpretations into Σ-interpretations. Given a Σσ1=σ2

s -interpretation A, we

construct the transformed structure B = α(A) as follows. For sorts σ ∈ ΣS \ {σ1, σ2}, we define

Bσ = Aσ. For the sorts σ1 and σ2, we define Bσ1
= Bσ2

= As. The set of variables interpreted by

B includes all of those interpreted by A, without the variables of sort s, and we define vB = vA.

Finally, since Bσ1 = Bσ2 = As, we can simply define fB = fA and pB = pA for each function

symbol f and predicate symbol p. Additionally, it is clear that if A is a Tσ1=σ2
s -interpretation,

then α(A) will be a T -interpretation.

Lemma B.5. Let T and B be as in Definition B.5, and let Ax be the set of closed Σ-formulas

that defines T . The class B is exactly the set of Σσ1=σ2
s -structures that satisfies the set of formulas

γ∅(Ax) = {γ∅(φ) | φ ∈ Ax}.

Proof. First, for every B ∈ B there is a Σ-structure A ∈ A such that A � Ax. By the definition

of γ, we also have B � γ∅(Ax). In the other direction, let B be a Σσ1=σ2
s -structure satisfying

γ∅(Ax). We define a Σ-structure A = α(B). It follows that A � Ax. This implies that A ∈ A

and hence B ∈ B.

Our motivating example is the theory of arrays where we restrict the sorts elem and index to

be equal to each other and to bv, i.e. we are interested in the theory T bv
array = (Tarray)

elem=index
bv .

We know that Tarray is polite with respect to the sorts elem and index. We want to know whether

it is also the case that T bv
array is polite with respect to the sort bv.

147

The main result of this section is to show that by merging two sorts σ1 and σ2 in a theory,

we preserve the politeness of the theory: the new theory will be polite with respect to the same

set of sorts as the original theory, modulo renaming of the instantiated sorts σ1 and σ2. Before

proving this, we need the following lemma.

Lemma B.6. Let Σ be a signature such that σ1, σ2 ∈ ΣS and s /∈ ΣS, and φ be a conjunction of

flat Σσ1=σ2
s -literals. Furthermore, let S ⊆ ΣS be such that σ1, σ2 ∈ S and S′ = S \ {σ1, σ2}∪{s}.

Then the following are equivalent:

1. φ is satisfiable in a Tσ1=σ2
s -interpretation A with |Aσ| = κσ for σ ∈ S′;

2. α(φ) is satisfiable in a T -interpretation B with |Bσ1 | = |Bσ2 | = κs, and |Bσ| = κσ for

σ ∈ S \ {σ1, σ2}.

Proof. Assume that φ is satisfiable in a Tσ1=σ2
s -interpretation A with |Aσ| = κσ for σ ∈ S′. Let

B = α(A). Then it is easy to see that the domains of B have the required sizes and ∃−→v .α(φ)

will be satisfied by B, where v is the vector of fresh variables introduced by α. Hence there is

an interpretation B′ that satisfies α(φ) such that |B′σ1
| = |B′σ2

| = κs and |Bsigma| = κσ, σ ∈

S \ {σ1, σ2}.

In the other direction, assume that α(φ) is satisfiable in a T -interpretation B with |Bσ| = κσ,

for σ ∈ S \ {σ1, σ2}, and |Bσ1 | = |Bσ2 | = κs. The domains Bσ1 and Bσ2 are of the same size

κs. They also agree on the arrangement of the dual variables of sorts σ1 and σ2 as α(φ) enforces

it. Let Vσ1
= varsσ1

(α(φ)) and Vσ2
= varsσ2

(α(φ)). Because α introduced these variables, and

because α enforces the same arrangement on on the dual variables, we have that [Vσ1]
B

= [Vσ2]
B

.

Now, let h : V Bσ1
7→ V Bσ2

be defined as follows

h((vσ1)
B

) , (vσ2)
B
.

This function is a bijection and is well-defined since B satisfies α(φ). Because |Bσ1 | = |Bσ2 |, we

can extend h to a full bijection hσ1
: Bσ1

7→ Bσ2
. Let hσ be the identity function for σ 6= σ1.

We use this family of functions to define an interpretation B′ isomorphic to B as follows.

B′ interprets all the domains of the sorts σ 6= σ1, as B′σ = Bσ, and the domain of the sort σ1

as B′σ1
= Bσ2

. For each variable v of sort σ, vB
′
, hσ(vB). For each function symbol f , we

148

define fB
′
(b1, . . . , bn) , hτn+1

(fB(h−1
τ1 (b1), . . . , h−1

τn (bn))) where τi is chosen to match the ith sort

in the arity of f . Similarly, we define pB
′
(b1, . . . , bn) iff pB(h−1

τ1 (b1), . . . , h−1
τn (bn)). It is easy to

see that the resulting interpretation B′ is indeed isomorphic to B, and as a result, B′ is also a

T -interpretation and satisfies α(φ).

Finally, let A be a Tσ1=σ2
s -interpretation obtained from B′ as in Definition B.5 (i.e. Aσ = B′σ

for σ ∈ S′ \ {s}, As = B′σ1
= B′σ2

, and the function and predicate symbols are interpreted the

same in A as in B). It is easy to see that we have |Aσ| = κσ for σ ∈ S′. It remains to say

how variables are interpreted in A. For variables v of sort σ ∈ S′ \ {s}, we let vA = vB
′
. In

addition, for each variable v ∈ varss(φ), we let vA = (vσ1)
B′

. Note that because of the way B′

was constructed, we also have vA = (vσ2)
B′

. Because A interprets the variables v of sort s in φ

the same as both vσ1 and vσ2 in B′ , A interprets everything else exactly the same as in B′, and

because B′ satisfies α(φ), it follows that A satisfies φ.

Now we can prove the main theorem.

Theorem B.6. Let Σ be a signature, σ1, σ2 ∈ ΣS, and s /∈ ΣS. If Σ-theory T is polite with respect

to S, where σ1, σ2 ∈ S and s /∈ S, then Tσ1=σ2
s is polite with respect to S′ = S \ {σ1, σ2} ∪ {s}.

Furthermore, if witness is a witness function for theory T , then an acceptable witness function

for Tσ1=σ2
s is

witnessσ1=σ2
s (φ) = (γvarss(φ) ◦ witness ◦ α)(φ) .

Proof. First we show that Tσ1=σ2
s is smooth with respect to S′. Let φ be a conjunction of

flat Σσ1=σ2
s -literals satisfiable in a Tσ1=σ2

s -structure A. We are given cardinalities κσ ≥ |Aσ|,

for σ ∈ S′. By Lemma B.6 we know that α(φ) is satisfiable in a T -interpretation B such that

|Bσ| = |Aσ|, σ ∈ S′\{s}, and |Bσ1
| = |Bσ2

| = |As|. By smoothness of T there is a T -interpretation

B′ that satisfies α(φ), such that |B′σ| = κσ, for σ ∈ S′ \ {s}, and |B′σ1
| = |B′σ2

| = κs. Then,

applying Lemma B.6 one more time (in the other direction), we get that φ is satisfiable in a

Tσ1=σ2
s -interpretation A′ such that |A′σ| = κσ, for σ ∈ S′, which proves smoothness.

Next, we need to show that Tσ1=σ2
s is also finitely witnessable. Let φ be a conjunction of

flat Tσ1=σ2
s -literals. Because T is finitely witnessable with respect to S, it has a witness function

witness. We define the witness function of the instantiated theory as

witnessσ1=σ2
s (φ) = (γvarss(φ) ◦ witness ◦ α)(φ) .

149

Among the fresh variables introduced by witnessσ1=σ2
s we will distinguish −→w , the fresh vari-

ables introduced by witness, and −→v σ1 and −→v σ2 , the fresh variables introduced by transformation

α (i.e. the variables vσ1 and vσ2 , corresponding to variables v ∈ varss(φ)).

First we need to show that if ψ = witnessσ1=σ2
s (φ), then ∃−→v σ1∃−→v σ2∃−→w .ψ and φ are Tσ1=σ2

s -

equivalent. This follows from the equivalence of the following statements:

A � φ

α(A){−→v σ1 ← −→v A,−→v σ2 ← −→v A} � α(φ) (definition of α)

α(A){−→v σ1 ← −→v A,−→v σ2 ← −→v A} � ∃−→w .witness(α(φ)) (T finitely witnessable)

α(A){−→v σ1 ← −→v A,−→v σ2 ← −→v A,−→w ← −→a } � witness(α(φ))

A{−→v σ1 ← −→v A,−→v σ2 ← −→v A,−→w ← −→a } � γvarss(φ)(witness(α(φ))) (definition of γ)

A � ∃−→v σ1∃−→v σ2∃−→w .ψ

To show that the defined witness function satisfies the second requirement of Definition 3.7,

let

E = { Eσ | σ ∈ S′ }

be a family of equivalence relations over a set V of variables with sorts in S′, and δV (E) be the

arrangement induced by E . Now, assume that there is a Tσ1=σ2
s -interpretation A such that

A �
ψ︷ ︸︸ ︷

(γvarss(φ) ◦ witness ◦ α)(φ) ∧ δV (E) .

For convenience, we will let ψ′ = (witness ◦ α)(φ) (so that ψ = γvarss(φ)(ψ
′)). As in the proof of

Theorem B.1 (page 136), we can assume wlog that varsS′(ψ) ⊆ V , i.e. the arrangement δV (E)

covers all the variables of ψ with sorts in S′ . We will make use of the following sets of variables:

• Vs = varss(V)

• Vφ = varss(φ)

• Vα = superscripted variables in α(φ) introduced by α (i.e. vσ1 and vσ2 for each v ∈ Vφ).

• Ws = variables of sort σ1 or σ2 in ψ′ introduced by the witness function for T .

150

• ∆s = Vs \ (Vφ ∪ Vα ∪Ws)

Note that because γ reinterprets variables of sorts σ1 and σ2 as variables of sort s, all of the

variables in the above sets are of sort s in the formula ψ ∧ δV .

The definition of γ also guarantees that, for all v ∈ Vφ, the variables v, vσ1 , and vσ2 must be

equal in A and (since A also satisfies δV) belong to the same equivalence class in Es. We can

thus construct a new family of equivalence relations E ′ in which the variables from Vα do not

appear, while keeping the same number of equivalence classes for each sort. Concretely, let

V ′s = Vs \ Vα ,

E′σ =


Eσ for σ 6= s ,

Es ∩ V ′s × V ′s for σ = s ,

E ′ = { E′σ | σ ∈ S′ } .

Also, let V ′ = V \ Vα, and for an equivalence relation E, let Q(E) denote the quotient set of E

(i.e. the set of all equivalence classes in E). It is clear that A � ψ∧δV ′(E ′) and |Q(Eσ)| = |Q(E′σ)|

for each σ ∈ S′.

In order to switch to reasoning in the signature Σ (as opposed to Σσ1=σ2
s), we need to modify

the equivalence relations so that variables of different sorts (when considered in the signature Σ)

are not in the same equivalence class (so that the induced arrangement is well-sorted). To this

end, we define the variable mappings βσ1
and βσ2

as follows. For v ∈ V ′s ,

βσ1
(v) =



vσ1 if v ∈ Vφ ,

v if v ∈Ws and v is of sort σ1 ,

v′ if v ∈Ws and v is of sort σ2 ,

v if v ∈ ∆s

βσ2
(v) =



vσ2 if v ∈ Vφ ,

v′ if v ∈Ws and v is of sort σ1 ,

v if v ∈Ws and v is of sort σ2 ,

v′ if v ∈ ∆s

In the above, the primed variables v′ are to be understood as fresh variables of the appropriate

sort. In addition, we (arbitrarily) choose to interpret variables in ∆s to be of sort σ1 when

working in Σ. Note that both functions are injective. The purpose of these mappings is to ensure

that every variable in V ′ has some corresponding variable of sorts σ1 and σ2 when working in Σ.

151

We can now construct a new family of equivalence relations as follows. First, let

E′′σ1
= { (βσ1

(v1), βσ1
(v2)) | (v1, v2) ∈ E′s } ,

E′′σ2
= { (βσ2(v1), βσ2(v2)) | (v1, v2) ∈ E′s } ,

For the other sorts σ ∈ S \{σ1, σ2}, we simply let E′′σ = E′σ = Eσ. We then set E ′′ = { E′′σ | σ ∈

S }. Let V ′′ be the set of variables appearing in E ′′. Note that as desired, variables in the

same equivalence class have the same sort. In addition, with the exception of the variables in

Vφ, all variables appearing in E ′ also appear in E ′′. The fresh primed variables are used just as

temporary place-holders of the appropriate sort. It is easy to see that the number of equivalence

classes is preserved, i.e. |Q(E′′σ1
)| = |Q(E′′σ2

)| = |Q(E′s)| = |Q(Es)|.

Now, it is not hard to construct a T -interpretation B starting from A such that

B � ψ′ ∧ δV ′′(E ′′) .

We do this as follows. The domains of the Σ-structure B will mimic those in A, except that

Bσ1 = Bσ2 = As. We also keep the same interpretations of all function and predicate symbols,

while moving back to the original signature, and hence use the new domains where necessary. It

follows that B is a T -structure. We interpret the variables of sorts in S \ {σ1, σ2} as they were,

and the variables of sorts σ1 and σ2 as (βσ1(v))
B

= (βσ2(v))
B

= (v)
A

. By the definition of γ and

due to the way we constructed E ′′, it is clear that ψ′ ∧ δV ′′(E ′′) is indeed satisfied by B.

Now we can apply the finite witnessability of T to obtain a T -interpretation C satisfying

ψ′ ∧ δV ′′(E ′′) such that for all σ ∈ S we have

Cσ = [varsσ(ψ′ ∧ δV ′′(E ′′))]
C
.

Since all of the variables in ψ′ are also in V ′′, we have that

|Cσ1 | = |Cσ2 | = |Q(E′′σ1
)| = |Q(E′′σ2

)| = |Q(E′s)| = |Q(Es)| .

Similarly, for σ ∈ S \ {σ1, σ2}, |Cσ| = |Q(Eσ)|. Now, define gσ1
: Q(E′s) 7→ Cσ1

as gσ1
([v]) =

(βσ1(v))C . This is well-defined since C satisfies δV ′′(E ′′). For the same reason, gσ1 is injective.

Finally, it must be surjective because |Q(E′s)| = |Cσ1
|. Define the bijection gσ2

similarly.

152

Now, let h : Cσ1
7→ Cσ2

= gσ2
◦ g−1

σ1
. Clearly, h is a bijection. As in the proof of Lemma B.6,

we can extend h to a family of bijections that forms an isomorphism into a T -interpretation D

such that:

• for σ ∈ S \ {σ1, σ2}, Dσ = Cσ ,

• Dσ1
= Dσ2

= Cσ2
,

• for v ∈ varsσ1
(V ′′), vD = h(vC) ,

• for v ∈ V ′′ \ varsσ1(V ′′), vD = vC ,

• D � ψ′ ∧ δV ′′(E ′′) .

Note that for v ∈ V ′s , we have:

(βσ1(v))
D

= h((βσ1(v))
C
) = (βσ2(v))

C
= (βσ2(v))

D
(B.20)

Finally, we construct a Tσ1=σ2
s -structure F from D by using the construction of Definition B.5.

We interpret in F only the variables v ∈ V as follows:

vF =


(vσ2)D if v ∈ Vφ ,

vD otherwise .

We also claim that for v ∈ V ′s ,

vF = (βσ2(v))
D
. (B.21)

This follows easily from the definition for v ∈ Vφ. Otherwise, we have vF = vD with v ∈Ws∪∆s.

But notice that in this case we know that either βσ1
or βσ2

is the identity function. The claim

(B.21) then follows from (B.20).

Since interpretations in F follow those in D except for variables in Vφ, and since no variables

from Vφ appear in ψ′ ∧ δV ′′(E ′′), it should be clear that F � γ∅(ψ′ ∧ δV ′′(E ′′)). Furthermore, for

v ∈ Vφ, we have

vF = (vσ2)D ,

(vσ2)F = (vσ2)D ,

(vσ1)F = (vσ1)D = (βσ1
(v))D = (βσ2

(v))D = (vσ2)D,

153

and thus

F � vσ1 = v ∧ vσ2 = v . (B.22)

It follows that F � ψ. It remains to show that F � δV (E). Recall that for each v ∈ Vφ, we know

that v, vσ1 , and vσ2 must all be in the same equivalence class in E . It follows that if F � δV ′(E ′),

then by (B.22), we will have F � δV (E).

To show F � δV ′(E ′), consider a pair of variables v1, v2 ∈ V ′. Suppose the sorts of v1 and

v2 are σ 6= s. We know that E′σ = E′′σ , so (v1, v2) ∈ E ′ iff (v1, v2) ∈ E ′′ iff F � v1 = v2 (since

F � γ∅(δV ′′(E ′′)) and γ has no effect in this case).

Finally, suppose that v1, v2 have sort s, so that v1, v2 ∈ V ′s . We have

(v1, v2) ∈ E ′ iff (βσ2
(v1), βσ2

(v2)) ∈ E ′′ by def of E ′′ and since βσ2
is injective

iff ((βσ2(v1))
D

= (βσ2(v2))
D

since D � δV ′′(E ′′)

iff vF1 = vF2 by (B.21)

Thus, F � ψ ∧ δV (E).

The last step is to show that Fσ = [varsσ(ψ ∧ δV (E))]
F

, for σ ∈ S′. Since varsS′(ψ) ⊆

V , it suffices to show that Fσ = [varsσ(δV (E))]
F

. For this to hold, it suffices to know that

|Fσ| = |Q(Eσ)|. For σ 6= s, we have that |Fσ| = |Dσ| = |Cσ| = |Q(Eσ)|. Similarly, we have

|Fs| = |Dσ2
| = |Cσ2

| = |Q(Es)|. This concludes the proof.

Example B.3. Consider again example B.2, i.e. we have a theory of arrays Tarray that operates

over the sorts

ΣS = {array1, . . . , arrayn, index1, . . . indexn, elem1}

and is polite with respect to the index and element sorts

ΣS = {index1, . . . indexn, elem1} .

Using Theorem B.6, we can now safely replace the sorts index1, index2 and elem1 with the

sort of bit-vectors bv, obtaining a theory Tarray(bv) of n-dimensional arrays where the elements

and the indices are of the same bit-vector sort. This theory Tarray(bv) of arrays over bit-vectors

154

is polite with respect to the sort bv, and therefore we can safely combine it with the theory

of bit-vectors Tbv.

Using the combination method for polite theories, we can therefore get a sound and

complete decision procedure for deciding the the theory of n-dimensional arrays over bit-

vectors, given a decision procedure and witness function for the theory of arrays Tarray and a

decision procedure for the theory of bit-vectors Tbv.

Theorem B.3 together with Theorem B.6 give a practical modular approach for reasoning

about and deciding combinations of polite theories.

155

Bibliography

[1] Tobias Achterberg. SCIP: Solving constraint integer programs. PhD thesis, TU Berlin,

2007.

[2] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations

Research Letters, 34(4):361–372, 2006.

[3] Behzad Akbarpour and Lawrence C. Paulson. MetiTarski: An automatic theorem prover

for real-valued special functions. Journal of Automated Reasoning, 44(3):175–205, 2010.

[4] Clark W. Barrett, David L. Dill, and Jeremy Levitt. Validity checking for combinations

of theories with equality. In Formal Methods In Computer-Aided Design, pages 187–201.

Springer, 1996.

[5] Clark W. Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on

demand in SAT Modulo Theories. In Logic for Programming, Artificial Intelligence, and

Reasoning, volume 4246 of LNCS, pages 512–526. Springer, 2006.

[6] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability

modulo theories. In Handbook of Satisfiability. IOS Press, 2009.

[7] Clark W. Barrett and Cesare Tinelli. CVC3. In Computer Aided Verification, pages 298–

302. Springer, 2007.

[8] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean

optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, 1995.

[9] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic

geometry. Springer, 2006.

[10] Sergey Berezin, Vijay Ganesh, and David L. Dill. An online proof-producing decision

procedure for mixed-integer linear arithmetic. In Hubert Garavel and John Mark Hatcliff,

editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 2619

of Lecture Notes in Computer Science, pages 521–536. Springer, 2003.

156

[11] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2 system description.

Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

[12] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio Ranise,

Peter van Rossumd, and Roberto Sebastiani. Efficient theory combination via Boolean

search. Information and Computation, 204(10):1493–1525, 2006.

[13] Aaron R. Bradley and Zohar Manna. The calculus of computation: decision procedures

with applications to verification, volume 374. Springer, 2007.

[14] Christopher W. Brown. Solution formula construction for truth invariant CAD’s. PhD

thesis, University of Delaware, 1999.

[15] Christopher W. Brown. Improved projection for cylindrical algebraic decomposition. Jour-

nal of Symbolic Computation, 32(5):447–465, 2001.

[16] Christopher W. Brown. QEPCAD B: a program for computing with semi-algebraic sets

using CADs. ACM SIGSAM Bulletin, 37(4):97–108, 2003.

[17] William S. Brown and Joseph F Traub. On Euclid’s algorithm and the theory of subresul-

tants. Journal of the ACM, 18(4):505–514, 1971.

[18] Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-vectors

and arrays. In Tools and Algorithms for the Construction and Analysis of Systems, volume

5505 of LNCS, pages 174–177. Springer, 2009.

[19] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto

Sebastiani. The MathSAT 4 SMT solver. In Computer Aided Verification, volume 5123 of

LNCS, pages 299–303. Springer, 2008.

[20] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzen, Alberto Griggio, and Roberto

Sebastiani. Delayed theory combination vs. Nelson-Oppen for satisfiability modulo theories:

A comparative analysis. Annals of Mathematics and Artificial Intelligence, 55(1):63–99,

2009.

157

[21] Bruno Buchberger, George Edwin Collins, Rüdiger Loos, and Rudolf Albrecht, editors.

Computer algebra. Symbolic and algebraic computation. Springer, 1982.

[22] Bob F. Caviness and Jeremy R. Johnson, editors. Quantifier Elimination and Cylindrical

Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, 2004.

[23] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(3):305–

317, 2005.

[24] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete

Mathematics, 4(4):305–337, 1973.

[25] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag,

1993.

[26] George Edwin Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. In Automata Theory and Formal Languages 2nd GI Conference Kaiser-

slautern, May 20–23, 1975, pages 134–183. Springer, 1975.

[27] George Edwin Collins and Hoon Hong. Partial cylindrical algebraic decomposition for

quantifier elimination. Journal of Symbolic Computation, 12(3):299–328, 1991.

[28] Stephen Arthur Cook. The complexity of theorem-proving procedures. In Proceedings of

the third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

[29] David Charles Cooper. Theorem proving in arithmetic without multiplication. Machine

Intelligence, 7(91-99):300, 1972.

[30] Scott Cotton. Natural domain SMT: A preliminary assessment. In Krishnendu Chatter-

jee and Thomas A. Henzinger, editors, Formal Modeling and Analysis of Timed Systems,

volume 6246 of Lecture Notes in Computer Science, pages 77–91, 2010.

[31] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-

proving. Communications of the ACM, 5(7):394–397, 1962.

158

[32] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal

of the ACM, 7(3):201–215, 1960.

[33] Leonardo de Moura and Nikolaj Bjørner. Relevancy propagation. Technical Report MSR-

TR-2007-140, Microsoft Research, 2007.

[34] Leonardo de Moura and Nikolaj Bjørner. Model-based Theory Combination. In 5th In-

ternational Workshop on Satisfiability Modulo Theories, volume 198 of Electronic Notes in

Theoretical Computer Science, pages 37–49. Elsevier, 2008.

[35] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Coimbatore Ra-

jamani Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction

and Analysis of Systems, volume 4963 of Lecture Notes in Computer Science, pages 337–

340. Springer, 2008.

[36] Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures.

In Formal Methods in Computer-Aided Design, 2009, pages 45–52. IEEE, November 2009.

[37] René Descartes. La Géométrie. 1637.

[38] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program

checking. Journal of the ACM, 52(3):365–473, 2005.

[39] Isili Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and practical

technique for solving linear inequalities over integers. In Ahmed Bouajjani and Oded Maler,

editors, Computer Aided Verification, volume 5643 of Lecture Notes in Computer Science,

pages 233–247. Springer, 2009.

[40] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra meets computer logic.

ACM SIGSAM Bulletin, 31(2):2–9, 1997.

[41] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In

Thomas Ball and Robert B. Jones, editors, Computer Aided Verification, volume 4144 of

Lecture Notes in Computer Science, pages 81–94. Springer, 2006.

159

[42] Herbert B. Enderton. A mathematical introduction to logic. Academic press New York,

1972.

[43] Jean-Christophe Filliâtre, Sam Owre, Harald Ruess, and Natarajan Shankar. ICS: Inte-

grated Canonizer and Solver. In Computer Aided Verification, pages 246–249. Springer,

2001.

[44] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schubert. Effi-

cient solving of large non-linear arithmetic constraint systems with complex Boolean struc-

ture. Journal on Satisfiability, Boolean Modeling and Computation, 1(3-4):209–236, 2007.

[45] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann,

and Harald Zankl. Sat solving for termination analysis with polynomial interpretations.

Theory and Applications of Satisfiability Testing, pages 340–354, 2007.

[46] Évariste Galois. Sur la théorie des nombres. Bulletin des sciences mathématiques, physiques

et chimiques, 13:428–435, 1830.

[47] Carl Friedrich Gauss. Werke, volume 2. Königlichen Gesellschaft der Wissenschaften, 1876.

[48] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for computer algebra.

Springer, 1992.

[49] Paul C. Gilmore. A proof method for quantification theory: its justification and realization.

IBM Journal of research and development, 4(1):28–35, 1960.

[50] Ralph Edward Gomory. Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society, 64(5):275–278, 1958.

[51] Alberto Griggio. A practical approach to satisfiability modulo linear integer arithmetic.

Journal on Satisfiability, Boolean Modeling and Computation, 8:1–27, 2012.

[52] Hoon Hong. An improvement of the projection operator in cylindrical algebraic decomposi-

tion. In Proceedings of the international symposium on Symbolic and algebraic computation,

pages 261–264. ACM, 1990.

160

[53] Hoon Hong. Comparison of several decision algorithms for the existential theory of the

reals. 1991.

[54] Muh.ammad ibn Mūsā al Khwārizmı̄. Hisab al-jabr w’al-muqabala. 820.

[55] Qin Jiushao. Mathemathical Treatise in Nine Chapters. 1247.

[56] Dejan Jovanović and Clark W. Barrett. Polite theories revisited. Technical Report TR2010-

922, Department of Computer Science, New York University, January 2010.

[57] Dejan Jovanović and Clark W. Barrett. Polite theories revisited. In Logic for Programming,

Artificial Intelligence, and Reasoning, volume 6397 of LNCS, pages 402–416. Springer Berlin

/ Heidelberg, 2010.

[58] Dejan Jovanović and Leonardo de Moura. Cutting to the chase: Solving linear integer

arithmetic. In Proceedings of the 23rd International Conference on Automated Deduction,

pages 338–353. Springer, 2011.

[59] Donald Ervin Knuth. The Art of Computer Programming, volume 2: Seminumerical Algo-

rithms. Addison Wesley, third edition, 1997.

[60] Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov. Conflict resolution. In

Ian P. Gent, editor, Principles and Practice of Constraint Programming, volume 509 of

Lecture Notes in Computer Science, pages 509–523. Springer, 2009.

[61] Daniel Kroening and Ofer Strichman. Decision procedures: an algorithmic point of view.

Springer-Verlag New York Inc, 2008.

[62] Sava Krstić and Amit Goel. Architecting solvers for SAT modulo theories: Nelson-Oppen

with DPLL. In Boris Konev and Frank Wolter, editors, Frontiers of Combining Systems,

volume 4720 of Lecture Notes in Computer Science, pages 1–27. Springer, 2007.

[63] Sava Krstić, Amit Goel, Jim Grundy, and Cesare Tinelli. Combined Satisfiability Modulo

Parametric Theories. In Orna Grumberg and Michael Huth, editors, Tools and Algorithms

for the Construction and Analysis of Systems, 13th International Conference, TACAS 2007,

volume 4424 of Lecture Notes in Computer Science, pages 602–617. Springer, 2007.

161

[64] Rüdiger Loos. Generalized polynomial remainder sequences. Computer Algebra: Symbolic

and Algebraic Computation, pages 115–137, 1982.

[65] Scott McCallum. An improved projection operation for cylindrical algebraic decomposition.

PhD thesis, University of Wisconsin-Madison, 1984.

[66] Sean McLaughlin and John Robert Harrison. A proof-producing decision procedure for real

arithmetic. In Proceedings of the 20th International Conference on Automated Deduction,

volume 3632, page 295. Springer, 2005.

[67] Kenneth L. McMillan, Andreas Kuehlmann, and Mooly Sagiv. Generalizing DPLL to richer

logics. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification, volume

5643 of Lecture Notes in Computer Science, pages 462–476. Springer, 2009.

[68] Bhubaneswar Mishra. Algorithmic algebra. Springer, 1993.

[69] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Ma-

lik. Chaff: engineering an efficient SAT solver. In Proceedings of the 38th annual Design

Automation Conference, pages 530–535. ACM, 2001.

[70] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM

Transactions on Programming Languages and Systems, 1(2):245–257, October 1979.

[71] Isaac Newton. Arithmetica universalis: sive de compositione et resolutione arithmetica

liber. 1732.

[72] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo

theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).

Journal of the ACM, 53(6):937–977, 2006.

[73] Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical Com-

puter Science, 12(3):291–302, 1980.

[74] Christos H. Papadimitriou. On the complexity of integer programming. Journal of the

ACM, 28(4):765–768, 1981.

162

[75] Grant O. Passmore. Combined Decision Procedures for Nonlinear Arithmetics, Real and

Complex. PhD thesis, University of Edinburgh, 2011.

[76] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verification. In Pro-

ceedings of the 22nd International Conference on Automated Deduction, pages 485–501.

Springer, 2009.

[77] William Pugh. The Omega test: a fast and practical integer programming algorithm for

dependence analysis. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing,

pages 4–13. ACM, 1991.

[78] Zvonimir Rakamarić and Alan J. Hu. A Scalable Memory Model for Low-Level Code. In

Verification, Model Checking, and Abstract Interpretation, volume 5403 of LNCS, page 304.

Springer-Verlag, 2009.

[79] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining Data Structures

with Nonstably Infinite Theories Using Many-Sorted Logic. In Frontiers of Combining

Systems, volume 3717 of LNCS, pages 48–64. Springer, 2005.

[80] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining Data Structures

with Nonstably Infinite Theories using Many-Sorted Logic. Research Report RR-5678,

INRIA, 2005.

[81] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal

of the ACM, 12(1):23–41, 1965.

[82] Sanjit A. Seshia and Randal E. Bryant. Deciding quantifier-free Presburger formulas using

parameterized solution bounds. In Logic in Computer Science, pages 100–109. IEEE, 2004.

[83] Robert E. Shostak. An algorithm for reasoning about equality. In 5th international joint

conference on Artificial intelligence, pages 526–527. Morgan Kaufmann Publishers Inc.,

1977.

[84] Robert E. Shostak. Deciding combinations of theories. In 6th Conference on Automated

Deduction, pages 209–222. Springer, 1982.

163

[85] João P. Marques Silva and Karem A. Sakallah. GRASP – a new search algorithm for

satisfiability. In International Conference on Computer-Aided Design, pages 220–227. ACM

and IEEE Computer Society, 1996.

[86] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for proposi-

tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[87] Adam W. Strzeboński. Computing in the field of complex algebraic numbers. Journal of

Symbolic Computation, 24(6):647–656, 1997.

[88] Adam W. Strzeboński. Cylindrical algebraic decomposition using validated numerics. Jour-

nal of Symbolic Computation, 41(9):1021–1038, 2006.

[89] Jacques Charles François Sturm. Mémoire sur la résolution des équations numériques.

1835.

[90] Alfred Tarski. Über definierbare Mengen reeller Zahlen. Annales de la Société Polonaise

de Mathématique, 9, 1930.

[91] Alfred Tarski. A decision method for elementary algebra and geometry. Technical Report

R-109, Rand Corporation, 1951.

[92] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen

combination procedure. In Frontiers of Combining Systems, Applied Logic, pages 103–120.

Kluwer Academic Publishers, March 1996.

[93] Cesare Tinelli and Calogero G. Zarba. Combining decision procedures for sorted theories.

In Logic in Artificial Intelligence, volume 3229 of LNAI, pages 641–653. Springer, 2004.

[94] Cesare Tinelli and Calogero G. Zarba. Combining decision procedures for theories in sorted

logics. Technical Report 04-01, Department of Computer Science, The University of Iowa,

February 2004.

[95] Cesare Tinelli and Calogero G. Zarba. Combining nonstably infinite theories. Journal of

Automated Reasoning, 34(3):209–238, 2005.

164

[96] Ashish Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints. In

Computer Science Logic, pages 248–262. Springer, 2005.

[97] Lou van den Dries. Alfred Tarski’s elimination theory for real closed fields. The Journal

of Symbolic Logic, 53(1):7–19, 1988.

[98] Alexandre Joseph Hidulphe Vincent. Note sur la résolution des équations numériques.

Journal de Mathématiques Pures et Appliquées, 1:341–372, 1836.

[99] Volker Weispfenning. Quantifier elimination for real algebra - the quadratic case and

beyond. AAECC, 8:85–101, 1993.

[100] Laurence A. Wolsey and George L. Nemhauser. Integer and combinatorial optimization.

Wiley New York, 1999.

[101] Wen-Tsun Wu. Mathematics mechanization: Mechanical Geometry Theorem-Proving, Me-

chanical Geometry Problem-Solving, and Polynomial Equations-Solving. Kluwer Academic

Publishers, 2001.

[102] Harald Zankl and Aart Middeldorp. Satisfiability of non-linear (ir)rational arithmetic. In

Logic for Programming, Artificial Intelligence, and Reasoning, pages 481–500. Springer,

2010.

165

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Linear Integer Arithmetic
	Preliminaries
	A Cutting-Planes Proof System
	The Abstract Search Procedure
	Deriving tight inequalities
	Main procedure
	Termination
	Relevant propagations

	Strong Conflict Resolution
	Experimental Evaluation

	Non-Linear Arithmetic
	Preliminaries
	An Abstract Decision Procedure
	Termination

	Producing Explanations
	Cylindrical Algebraic Decomposition
	Projection-Based Explanations

	Related Work and Experimental Results

	Combination of Theories
	Preliminaries
	Nelson-Oppen
	Polite Theories
	Finite Witnessability Revisited

	New Combination Method
	Combination Method
	Extension to Polite Combination

	Theory of Uninterpreted Functions
	Equality Propagator
	Care Function

	Theory of Arrays
	A Decision Procedure
	Equality Propagator
	Care Function

	Experimental Evaluation

	Conclusion
	Appendices
	nlsat Implementation Details
	Polynomials
	Real algebraic numbers
	Analysis

	More on Theory Combination
	Being Flat is General Enough
	Preservation of Theory Properties under Combination
	Combining Multiple Polite Theories
	Theory Instantiations

	Bibliography

