
Verification of Fault-Tolerant Protocols with Sally

Bruno Dutertre, Dejan Jovanović, and Jorge A. Navas

Computer Science Laboratory, SRI International

Abstract. Sally is a model checker for infinite-state systems that imple-
ments several verification algorithms, including a variant of IC3/PDR
called Property-Directed K-induction. We present an application of Sally
to automated verification of fault-tolerant distributed algorithms.

1 Introduction

Sally is a new model checker for infinite-state systems developed by SRI In-
ternational. It is a successor of the Symbolic Analysis Laboratory (SAL) [6].
Sally supports bounded model checking and proof by k-induction, and it im-
plements a novel model-checking algorithm based on IC3/PDR that can auto-
matically discover k-inductive strengthening of a property of interest. Details of
this Property-Directed K-induction (PD-KIND) algorithm are presented in [12].

We present an application of Sally to fault-tolerant distributed algorithms.
We focus on a class of synchronous algorithms that consist of one or more
rounds of communication between N processes—some of which may be faulty—
followed by some form of averaging or voting to achieve agreement among pro-
cesses. This type of algorithm is at the core of many fault-tolerant systems used
in avionics or other control systems, including protocols for fault-tolerant sam-
pling of sensor data and clock-synchronization protocols. Until the advent of
PDR and relatives, such protocols could not be verified automatically by model
checkers. The best technique available was k-induction, which is typically not
fully automatic and requires expertise to discover auxiliary inductive invari-
ants. We show that PD-KIND can automatically verify complex fault-tolerant
algorithms, under a variety of fault assumptions.

2 Sally

Sally is a modular and extensible framework for prototyping and develop-
ment of model-checking algorithms. Currently, Sally implements several algo-
rithms based on satisfiability modulo theories (SMT), including bounded model
checking and k-induction, and the novel PD-KIND algorithm [12]. PD-KIND
generalizes IC3/PDR [4, 10] by relying of k-induction and k-step reachability as
subprocedures, rather than ordinary one-step induction and reachability. The
PD-KIND procedure relies on backend SMT solvers to provide features such as
model-based generalization [13] and interpolants. The current implementation
combines Yices 2 [8] and MathSAT 5 [5]. Other backend solvers can also be used



for k-induction and bounded model checking. Sally is open source software
available at https://github.com/SRI-CSL/sally.

The primary input language of Sally is called MCMT (for Model Checking
Modulo Theories). This language extends the SMT-LIB 2 standard [1] with
commands for defining transition systems. SMT-LIB 2 is used to represent terms
and formulas. Transition systems are defined by specifying a state space, a set
of initial states, and a transition relation. MCMT also allows one to specify
invariant properties. Sally can parse other input languages than MCMT and
internally convert them to MCMT. All our examples are written in a subset of
the SAL language [7], converted to MCMT, then analyzed using Sally.

3 Modeling Fault-Tolerant Protocols

We use a simple modeling approach that is generally applicable to synchronous
algorithms. The system state is a finite set of arrays indexed by process identities.
Communication channels are also modeled using arrays (e.g., a channel from
process i to process j is represented as an array element c[i][ j]). Each transition
of the system corresponds to one round of the algorithm: a process i updates its
local variables then send data on one or more communication channel.

To model faults, we assign a status to each process and we specify faulty
behavior as assumptions on the data transmitted by processes. A faulty process
is then assumed to execute the algorithm correctly, except when it sends data.
This approach simplifies process specifications and is sufficient for all types of
process faults [20].

3.1 Approximate Agreement

We illustrate our approach using a protocol based on the unified fault-tolerant
protocol of Miner et al. [16]. The protocol ensures approximate agreement. It
assumes inexact communication, which models errors in sensor sampling or
clock drifts. The fault model distinguishes between omissive and transmissive
faults, and between symmetric and asymmetric behavior. A symmetric omissive
process either fails to send data (on all its channels) or sends correct data. An
asymmetric omissive process may send nothing to some and correct data to
other processes. A symmetric transmissive process sends possibly incorrect
data, but it sends the same data on all its channels. An asymmetric transmissive
process behaves in an arbitrary way.

The protocol involves N processes. Process i holds a real value v[i]. In each
round, this process broadcasts its value to the all processes,1 computes a fault-
tolerant average of the values it receives, and updates v[i] using this average.
The protocol is intended to ensure convergence: the absolute difference between
v[i] and v[ j] is approximately reduced by half with each protocol round.

1 To avoid special cases, we assume that i is included in the set of recipients.



We model this protocol as a single state-transition system that operates on
arrays. The main state variables include an array v that stores process values,
and arrays m and c that model communication channels:

v: ARRAY PID OF DATA,
m: ARRAY PID OF ARRAY PID OF BOOLEAN,
c: ARRAY PID OF ARRAY PID OF DATA,

Variable m[j][i] indicates that the message from i to j is missing. If m[j][i]
is true, then c[j][i] is ignored, otherwise c[j][i] is the value that j receives
from i. We formalize the fault model as constraints on m’[j][i] and c’[j][i]
based on the status of process i. These constraints are as follows:2

(FORALL (i: PID): status[i] = Good =>
(FORALL (j: PID): NOT m’[j][i] AND received(v[i], c’[j][i])))

(FORALL (i: PID): status[i] = SymmetricOmissive =>
(FORALL (j: PID): m’[j][i]) OR (FORALL (j: PID): received(v[i], c’[j][i])))

(FORALL (i: PID): status[i] = AsymmetricOmissive =>
(FORALL (j: PID): m’[j][i] OR received(v[i], c’[j][i])))

(FORALL (i: PID): status[i] = SymmetricTransmissive =>
(FORALL (j: PID): m’[j][i])

OR (FORALL (j, k: PID): c’[j][i] - c’[k][i] <= 2 * epsilon))

The parameter ε is a bound on communication error; if a process sends a
value x then the recipient reads a value in the interval [x− ε, x + ε]. In the above
rules, this communication error is specified by predicate received:

received(x: DATA, y: DATA): BOOLEAN = x - epsilon <= y AND y <= x + epsilon;

A non-trivial part of the model is the definition of the fault-tolerant average.
We use a form of mid-value select, parameterized by an constant τ: when a
process i receives n ≤ N values in round k, it sorts these values in increasing
order to form a sequence of reals x1, . . . , xn. The mid-value select is the average
of xτ+1 and xn−τ. (If n < τ, a default value is chosen.) In practice, the parameter
τ is equal to the number of asymmetric faults to tolerate, and must be chosen
so that n > 2τ.

We do not want to write a sorting algorithm in SAL, as translation to MCMT
requires all functions applications to be inlined. For any sorting algorithm, this
unrolling inevitably would cause an exponential blowup. Instead, we use a
specification trick. We introduce two auxiliary state variables p and n:

p: ARRAY PID OF ARRAY PID OF PID,
n: ARRAY PID OF [0 .. N],

For a process i, n[i] denotes the number of messages received by i, and p[i]
is a permutation of the indices in {1, . . . ,N} that enumerates the n received
values in increasing order. We specify these relations as shown in Figure 1. This
essentially states the post-condition of the sorting algorithm we need. The input
is an array v of N values and an array m of Boolean flags; where m[i] true means
that v[i] is missing. The output includes a variable n that counts the number of

2 The actual SAL syntax is less readable but equivalent.



non-missing elements, and a permutation p that sorts the non-missing elements
in increasing order. From p, n, and v, we can easily define the mid-value select.

sort_and_filter(v: ARRAY PID OF DATA,
m: ARRAY PID OF BOOLEAN,
n: [0 .. N],
p: ARRAY PID OF PID): BOOLEAN =

(FORALL (i: PID): (i>n <=> m[p[i]]))
AND (FORALL (i: PID): i<n => v[p[i]] <= v[p[i+1]])
AND (FORALL (i, j: PID): p[i] = p[j] => i = j);

Fig. 1. Sorting and filter predicate

The final step is to specify the convergence property. The values v[i]s are
initially within some distance∆ of each other and get closer and closer with each
protocol round. Because of the communication error, the best bound one can
achieve is 2ε. The protocol converges towards this bound at an exponential rate.
A more precise specification is shown in Figure 2. We add a state variable delta
to our state-transition system to store the bound. The variable is initialized to
an arbitrary bound larger than 2ε, then it is updated with every protocol round
as shown in the figure. Our goal is to show that the convergence property is
invariant: the difference between v[i] and v[j] is bounded by delta.

% Initial precision: maximum difference between the initial values
initial_delta: { x: REAL| x > 2 * epsilon };

% Convergence function: if all values are with some delta
% at round k then they are within next(delta) at round k+1.
next(x: REAL): REAL = x/2 + 2 * epsilon;

% Precision improvement with each round
delta’ = next(delta);

% Convergence property for the approx system
convergence: LEMMA approx |- G(FORALL (i, j: PID): v[i] - v[j] <= delta);

Fig. 2. Convergence and approximate agreement property

3.2 Verification Results

We have analyzed the approximate agreement protocol under four scenarios,
and for different values of N. Each scenario makes different fault assumptions:
no faults (Scenario 0); one symmetric transmissive and one asymmetric omissive
faults (Scenario 1); one asymmetric transmissive and one asymmetric omissive
faults (Scenario 2); and one asymmetric transmissive, one asymmetric omissive,
and one symmetric omissive faults (Scenario 3). The results are summarized
in Table 1. The left part shows the results and runtime of Sally’s k-induction
engine. The right-hand side shows results and runtimes of Sally’s PD-KIND.
The k-induction engine iteratively tries k-induction for k from 1 to 10.



K-induction PD-Kind
N Scen. 0 Scen. 1 Scen. 2 Scen. 3 Scen. 0 Scen. 1 Scen. 2 Scen. 3

4 u 88 i 0 i 0 i 0 v 3 i 0 i 0 i 0
5 t t t i 0 v 57 v 84 v 47 i 1
6 t t t t v 397 v 1742 v 1771 v 461
7 t t t t v 3581 v 3935 v 4838 v 3124

Table 1. Analysis results. Each entry reports the result and runtime of an experiment. v
means valid (the property was proved), i means invalid (a counterexample was produced),
u means unknown (k-induction was inconclusive), t means timeout. Runtimes are CPU
time in seconds. The timeout is 5000 seconds.

M
N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 0.04 0.05 0.06 0.08 0.09 0.11 0.21 0.18 0.24 0.32 0.46 0.43 0.53 0.85 0.85 0.91
P1 4 0.06 0.08 0.13 0.16 0.21 0.22 0.30 0.41 0.56 0.61 0.74 0.67 1.04 0.94 1.47 1.66

5 0.09 0.15 0.21 0.27 0.37 0.54 0.79 0.77 0.86 1.11 1.08 1.31 1.87 2.55 3.11 3.36

3 0.03 0.04 0.06 0.08 0.11 0.13 0.14 0.18 0.30 0.36 0.44 0.48 0.59 0.85 0.94 1.04
P2 4 0.06 0.10 0.13 0.16 0.30 0.28 0.40 0.35 0.47 0.78 1.02 0.83 1.02 1.17 1.77 1.61

5 0.09 0.13 0.20 0.38 0.37 0.47 0.49 0.70 0.88 1.20 1.14 1.65 2.02 2.28 2.73 3.38

Table 2. Runtimes on variants of the OM1 protocol.

The convergence property is not k-inductive, so k-induction cannot prove it.
On the other hand, for instances where the property does not hold, then the K-
induction engine finds a counterexample very quickly. PD-KIND works much
better. On all instances where the property holds, it can automatically prove it.
On all instances where the property is false, it can find a counterexample. The
verification cost tends to be higher with more complex fault models. Because
the algorithm is quite complex, scalability is an issue. The runtime grows very
quickly as N increases, both for the PD-KIND and k-induction engines. We
believe the complexity of the averaging function is the main bottleneck for this
example.

We have verified a simpler fault-tolerant algorithm such as OM1, which uses
majority voting. Our formalization is based on the Boyer-Moore algorithm [3].
Table 2 shows runtimes for a variant of OM1 that uses N processes and M relays.
We used Sally to prove the two classic properties of OM1—agreement (P1) and
validity (P2)—in a scenario with one Byzantine-faulty relay. It turns out that
both properties are k-inductive. As shown in the table, the k-induction engine
proves the properties in a few seconds at most. PD-KIND also works for these
examples, but it is much slower. For example, proving agreement for N = 5 and
M = 20 takes about 4 sec for k-induction and more than 20 min for PD-KIND.



4 Related Work

Developing correct distributed algorithms is notoriously hard; making sure that
these algorithms tolerate failures is even harder. Since the 1980s, formal methods
have been used to precisely model and mathematically prove the correctness
of such fault-tolerant algorithms. Most of this work use interactive theorem
provers (e.g., [18, 17, 15, 21]). More recently, Padon et al. use a semi-automated
proof method based encoding protocol rules into a decidable logic [19].

Model checking using abstraction technique has also been applied to this
domain. Konnov and his colleagues show how a threshold-based algorithms can
be modeled using counter systems, and develop verification algorithms for these
systems [11, 14]. An earlier example by Fisman et al. [9] uses another abstraction
technique and applies regular model checking [2]. These abstraction methods
are limited to special classes of protocols. The type of algorithms that we have
presented manipulate numerical data and rely on non-trivial computation, and
do not belong to these classes. When abstractions are not applicable, proofs
using k-induction are possible but such proofs can be difficult, and require
expertise to identify key auxiliary invariants.

5 Conclusion

Until recently, automated verification of complex fault-tolerant algorithms was
impossible. One either had to resort to interactive theorem proving—which
is slow and requires expertise—or rely on semi-automated method such as k-
induction. New model-checking algorithms based on IC3/PDR have changed
the picture; it is now feasible to verify a rich class of fault-tolerant protocols in
a fully automated manner. Remaining challenges include improving scalability
of these methods and extending them to richer logical theories.

References

1. C. Barrett, A. Stump, C. Tinelli, et al. The SMT-LIB standard: Version 2.0.
2. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In CAV,

pages 403–418, 2000.
3. R. S. Boyer and J. S. Moore. MJRTY—a fast majority vote algorithm. In R. S. Boyer,

editor, Automated Reasoning: Essays in Honor of Woody Blesdoe, pages 105–117, 1991.
4. A. R. Bradley. SAT-based model checking without unrolling. In VMCAI, pages

70–87, 2011.
5. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT solver.

In TACAS, pages 93–107. 2013.
6. L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari.

SAL 2. In CAV, pages 496–500, 2004.
7. L. de Moura, S. Owre, and N. Shankar. The SAL Language Manual. Technical Report

SRI-CSL-01-02, Computer Science Laboratory, SRI International, 2003.
8. B. Dutertre. Yices 2.2. In CAV, pages 737–744, 2014.



9. D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault tolerance of distributed
protocols. In TACAS, pages 315–331, 2008.

10. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT, pages
157–171. 2012.

11. A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Parameterized model check-
ing of fault-tolerant distributed algorithms by abstraction. In FMCAD, pages 201–
209, 2013.

12. D. Jovanović and B. Dutertre. Property-directed k-induction. In FMCAD, pages
85–92, 2016.

13. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recursive
programs. In CAV, pages 17–34, 2014.

14. I. Konnov, H. Veith, and J. Widder. SMT and POR beat counter abstraction: Param-
eterized model checking of threshold-based distributed algorithms. In CAV, pages
85–102, 2015.

15. P. Lincoln and J. Rushby. Formal verification of an interactive consistency algorithm
for the Draper FTP architecture under a hybrid fault model. In COMPASS, pages
107–120, 1994.

16. P. Miner, A. Geser, L. Pike, and J. Maddalon. A unified fault-tolerance protocol. In
FORMATS/FTRTFT, pages 167–182, 2004.

17. P. S. Miner. Verification of fault-tolerant clock synchronization systems. NASA
Technical Paper 3349, 1993.

18. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Soft-
ware Engineering, 21(2):107–125, 1995.

19. O. Padon, G. Losa, M. Sagiv, and S. Shoham. Paxos made EPR: Decidable reasoning
about distributed protocols. OOPSLA, 1:108:1–108:31, 2017.

20. L. Pike, J. Maddalon, P. Miner, and A. Geser. Abstractions for fault-tolerant dis-
tributed system verification. In TPHOL, pages 257–270, 2004.

21. J. R. Wilcox, D. Woos, P. Pancheckha, Z. Tatlock, X. Wang, M. D. Ernst, and T. An-
derson. Verdi: A framework for implementing and formally verifying distributed
systems. In PLDI, pages 357–368, 2015.


